BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24000319)

  • 1. Reversibility of Liver Fibrosis and Inactivation of Fibrogenic Myofibroblasts.
    Liu X; Xu J; Brenner DA; Kisseleva T
    Curr Pathobiol Rep; 2013 Sep; 1(3):209-214. PubMed ID: 24000319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis.
    Kisseleva T; Cong M; Paik Y; Scholten D; Jiang C; Benner C; Iwaisako K; Moore-Morris T; Scott B; Tsukamoto H; Evans SM; Dillmann W; Glass CK; Brenner DA
    Proc Natl Acad Sci U S A; 2012 Jun; 109(24):9448-53. PubMed ID: 22566629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies.
    Xu J; Liu X; Koyama Y; Wang P; Lan T; Kim IG; Kim IH; Ma HY; Kisseleva T
    Front Pharmacol; 2014; 5():167. PubMed ID: 25100997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Origin and Fate of Liver Myofibroblasts.
    Kim HY; Sakane S; Eguileor A; Carvalho Gontijo Weber R; Lee W; Liu X; Lam K; Ishizuka K; Rosenthal SB; Diggle K; Brenner DA; Kisseleva T
    Cell Mol Gastroenterol Hepatol; 2024; 17(1):93-106. PubMed ID: 37743012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advancement of molecular mechanisms of liver fibrosis.
    Seki E; Brenner DA
    J Hepatobiliary Pancreat Sci; 2015 Jul; 22(7):512-8. PubMed ID: 25869468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and cellular mechanisms of liver fibrosis and its regression.
    Kisseleva T; Brenner D
    Nat Rev Gastroenterol Hepatol; 2021 Mar; 18(3):151-166. PubMed ID: 33128017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro reversion of activated primary human hepatic stellate cells.
    El Taghdouini A; Najimi M; Sancho-Bru P; Sokal E; van Grunsven LA
    Fibrogenesis Tissue Repair; 2015; 8():14. PubMed ID: 26251672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Hepatic Stellate Cells: Isolation and Characterization.
    Liu X; Brenner DA; Kisseleva T
    Methods Mol Biol; 2023; 2669():221-232. PubMed ID: 37247063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What's new in liver fibrosis? The origin of myofibroblasts in liver fibrosis.
    Iwaisako K; Brenner DA; Kisseleva T
    J Gastroenterol Hepatol; 2012 Mar; 27 Suppl 2(Suppl 2):65-8. PubMed ID: 22320919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular interplays in hepatic stellate cells: apoptosis, senescence, and phenotype reversion as cellular connections that modulate liver fibrosis.
    de Oliveira da Silva B; Ramos LF; Moraes KCM
    Cell Biol Int; 2017 Sep; 41(9):946-959. PubMed ID: 28498509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of TGF-β signaling in differentiation of mesothelial cells to vitamin A-poor hepatic stellate cells in liver fibrosis.
    Li Y; Lua I; French SW; Asahina K
    Am J Physiol Gastrointest Liver Physiol; 2016 Feb; 310(4):G262-72. PubMed ID: 26702136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-16 integrates signal pathways in myofibroblasts: determinant of cell fate necessary for fibrosis resolution.
    Pan Q; Guo CJ; Xu QY; Wang JZ; Li H; Fang CH
    Cell Death Dis; 2020 Aug; 11(8):639. PubMed ID: 32801294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deactivation Factor of Fibrogenic Hepatic Stellate Cells Induces Regression of Liver Fibrosis in Mice.
    Nakano Y; Kamiya A; Sumiyoshi H; Tsuruya K; Kagawa T; Inagaki Y
    Hepatology; 2020 Apr; 71(4):1437-1452. PubMed ID: 31549421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phenotypic fate and functional role for bone marrow-derived stem cells in liver fibrosis.
    Kisseleva T; Brenner DA
    J Hepatol; 2012 Apr; 56(4):965-72. PubMed ID: 22173163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pancreatic Stellate Cells Have Distinct Characteristics From Hepatic Stellate Cells and Are Not the Unique Origin of Collagen-Producing Cells in the Pancreas.
    Yamamoto G; Taura K; Iwaisako K; Asagiri M; Ito S; Koyama Y; Tanabe K; Iguchi K; Satoh M; Nishio T; Okuda Y; Ikeno Y; Yoshino K; Seo S; Hatano E; Uemoto S
    Pancreas; 2017 Oct; 46(9):1141-1151. PubMed ID: 28902784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a high throughput system to screen compounds that revert the activated hepatic stellate cells to a quiescent-like state.
    Nakano Y; Saijou E; Itoh T; Tanaka M; Miyajima A; Kido T
    Sci Rep; 2024 Apr; 14(1):8536. PubMed ID: 38609454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of myofibroblasts during regression of liver fibrosis.
    Kisseleva T; Brenner DA
    Cell Cycle; 2013 Feb; 12(3):381-2. PubMed ID: 23324345
    [No Abstract]   [Full Text] [Related]  

  • 18. The Role of NADPH Oxidases (NOXs) in Liver Fibrosis and the Activation of Myofibroblasts.
    Liang S; Kisseleva T; Brenner DA
    Front Physiol; 2016; 7():17. PubMed ID: 26869935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liver repair and regeneration after ischemia-reperfusion injury is associated with prolonged fibrosis.
    Konishi T; Schuster RM; Lentsch AB
    Am J Physiol Gastrointest Liver Physiol; 2019 Mar; 316(3):G323-G331. PubMed ID: 30543462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Developments on the Treatment of Liver Fibrosis.
    Koyama Y; Xu J; Liu X; Brenner DA
    Dig Dis; 2016; 34(5):589-96. PubMed ID: 27332862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.