These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24000925)

  • 1. The duplication-loss small phylogeny problem: from cherries to trees.
    Andreotti S; Reinert K; Canzar S
    J Comput Biol; 2013 Sep; 20(9):643-59. PubMed ID: 24000925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of tRNA Repertoires in Bacillus Inferred with OrthoAlign.
    Tremblay-Savard O; Benzaid B; Lang BF; El-Mabrouk N
    Mol Biol Evol; 2015 Jun; 32(6):1643-56. PubMed ID: 25660374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ancestral genome organization: an alignment approach.
    Holloway P; Swenson K; Ardell D; El-Mabrouk N
    J Comput Biol; 2013 Apr; 20(4):280-95. PubMed ID: 23560866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring Optimal Species Trees in the Presence of Gene Duplication and Loss: Beyond Rooted Gene Trees.
    Bayzid MS
    J Comput Biol; 2023 Feb; 30(2):161-175. PubMed ID: 36251762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
    Mirkin BG; Fenner TI; Galperin MY; Koonin EV
    BMC Evol Biol; 2003 Jan; 3():2. PubMed ID: 12515582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-scale coestimation of species and gene trees.
    Boussau B; Szöllosi GJ; Duret L; Gouy M; Tannier E; Daubin V
    Genome Res; 2013 Feb; 23(2):323-30. PubMed ID: 23132911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operon-based approach for the inference of rRNA and tRNA evolutionary histories in bacteria.
    Pawliszak T; Chua M; Leung CK; Tremblay-Savard O
    BMC Genomics; 2020 Apr; 21(Suppl 2):252. PubMed ID: 32299351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic and systems evolution in Vibrionaceae species.
    Gu J; Neary J; Cai H; Moshfeghian A; Rodriguez SA; Lilburn TG; Wang Y
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S11. PubMed ID: 19594870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes.
    Treangen TJ; Rocha EP
    PLoS Genet; 2011 Jan; 7(1):e1001284. PubMed ID: 21298028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of gene family evolutionary histories on phylogenetic species tree inference by gene tree parsimony.
    Shi T
    Mol Phylogenet Evol; 2016 Mar; 96():9-16. PubMed ID: 26702957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint amalgamation of most parsimonious reconciled gene trees.
    Scornavacca C; Jacox E; Szöllősi GJ
    Bioinformatics; 2015 Mar; 31(6):841-8. PubMed ID: 25380957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Counting and sampling gene family evolutionary histories in the duplication-loss and duplication-loss-transfer models.
    Chauve C; Ponty Y; Wallner M
    J Math Biol; 2020 Apr; 80(5):1353-1388. PubMed ID: 32060618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A global gene evolution analysis on Vibrionaceae family using phylogenetic profile.
    Vitulo N; Vezzi A; Romualdi C; Campanaro S; Valle G
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S23. PubMed ID: 17430568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies.
    Velandia-Huerto CA; Berkemer SJ; Hoffmann A; Retzlaff N; Romero Marroquín LC; Hernández-Rosales M; Stadler PF; Bermúdez-Santana CI
    BMC Genomics; 2016 Aug; 17(1):617. PubMed ID: 27515907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GIGA: a simple, efficient algorithm for gene tree inference in the genomic age.
    Thomas PD
    BMC Bioinformatics; 2010 Jun; 11():312. PubMed ID: 20534164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution through segmental duplications and losses: a Super-Reconciliation approach.
    Delabre M; El-Mabrouk N; Huber KT; Lafond M; Moulton V; Noutahi E; Castellanos MS
    Algorithms Mol Biol; 2020; 15():12. PubMed ID: 32508979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymorphic duplicate genes and persistent non-coding sequences reveal heterogeneous patterns of mitochondrial DNA loss in salamanders.
    Chong RA; Mueller RL
    BMC Genomics; 2017 Dec; 18(1):992. PubMed ID: 29281973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting Molecular Evolution in the Highly Diverse Plant Clade Caryophyllales Using Transcriptome Sequencing.
    Yang Y; Moore MJ; Brockington SF; Soltis DE; Wong GK; Carpenter EJ; Zhang Y; Chen L; Yan Z; Xie Y; Sage RF; Covshoff S; Hibberd JM; Nelson MN; Smith SA
    Mol Biol Evol; 2015 Aug; 32(8):2001-14. PubMed ID: 25837578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring duplication episodes from unrooted gene trees.
    Paszek J; Górecki P
    BMC Genomics; 2018 May; 19(Suppl 5):288. PubMed ID: 29745844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconciling gene and genome duplication events: using multiple nuclear gene families to infer the phylogeny of the aquatic plant family Pontederiaceae.
    Ness RW; Graham SW; Barrett SC
    Mol Biol Evol; 2011 Nov; 28(11):3009-18. PubMed ID: 21633114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.