These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24000925)

  • 21. Reconciling gene and genome duplication events: using multiple nuclear gene families to infer the phylogeny of the aquatic plant family Pontederiaceae.
    Ness RW; Graham SW; Barrett SC
    Mol Biol Evol; 2011 Nov; 28(11):3009-18. PubMed ID: 21633114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic genome-wide reconstruction of phylogenetic gene trees.
    Wapinski I; Pfeffer A; Friedman N; Regev A
    Bioinformatics; 2007 Jul; 23(13):i549-58. PubMed ID: 17646342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast ancestral gene order reconstruction of genomes with unequal gene content.
    Feijão P; Araujo E
    BMC Bioinformatics; 2016 Nov; 17(Suppl 14):413. PubMed ID: 28185578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inferring phylogeny from whole genomes.
    Górecki P; Tiuryn J
    Bioinformatics; 2007 Jan; 23(2):e116-22. PubMed ID: 17237078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unified modeling of gene duplication, loss, and coalescence using a locus tree.
    Rasmussen MD; Kellis M
    Genome Res; 2012 Apr; 22(4):755-65. PubMed ID: 22271778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inferring ancestral gene orders for a family of tandemly arrayed genes.
    Bertrand D; Lajoie M; El-Mabrouk N
    J Comput Biol; 2008 Oct; 15(8):1063-77. PubMed ID: 18781832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the origins of a Vibrio species.
    Vesth T; Wassenaar TM; Hallin PF; Snipen L; Lagesen K; Ussery DW
    Microb Ecol; 2010 Jan; 59(1):1-13. PubMed ID: 19830476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment and reconstruction of novel HSP90 genes: duplications, gains and losses in fungal and animal lineages.
    Pantzartzi CN; Drosopoulou E; Scouras ZG
    PLoS One; 2013; 8(9):e73217. PubMed ID: 24066039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GATC: a genetic algorithm for gene tree construction under the Duplication-Transfer-Loss model of evolution.
    Noutahi E; El-Mabrouk N
    BMC Genomics; 2018 May; 19(Suppl 2):102. PubMed ID: 29764363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.
    Gillis WQ; St John J; Bowerman B; Schneider SQ
    BMC Evol Biol; 2009 Aug; 9():207. PubMed ID: 19695090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ancestral gene synteny reconstruction improves extant species scaffolding.
    Anselmetti Y; Berry V; Chauve C; Chateau A; Tannier E; Bérard S
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S11. PubMed ID: 26450761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maximum likelihood models and algorithms for gene tree evolution with duplications and losses.
    Górecki P; Burleigh GJ; Eulenstein O
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S15. PubMed ID: 21342544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vertebrate phylogenomics: reconciled trees and gene duplications.
    Page RD; Cotton JA
    Pac Symp Biocomput; 2002; ():536-47. PubMed ID: 11928506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the reconstruction of the ancestral bacterial genomes in genus Mycobacterium and Brucella.
    Guyeux C; Al-Nuaimi B; AlKindy B; Couchot JF; Salomon M
    BMC Syst Biol; 2018 Nov; 12(Suppl 5):100. PubMed ID: 30458842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogenomics Identifies an Ancestral Burst of Gene Duplications Predating the Diversification of Aphidomorpha.
    Julca I; Marcet-Houben M; Cruz F; Vargas-Chavez C; Johnston JS; Gómez-Garrido J; Frias L; Corvelo A; Loska D; Cámara F; Gut M; Alioto T; Latorre A; Gabaldón T
    Mol Biol Evol; 2020 Mar; 37(3):730-756. PubMed ID: 31702774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.
    Lyubetsky V; Gershgorin R; Gorbunov K
    BMC Bioinformatics; 2017 Dec; 18(1):537. PubMed ID: 29212445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BOPAL 2.0 and a study of tRNA and rRNA gene evolution in
    Chua M; Tan A; Tremblay-Savard O
    J Bioinform Comput Biol; 2021 Dec; 19(6):2140007. PubMed ID: 34775921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. After the duplication: gene loss and adaptation in Saccharomyces genomes.
    Cliften PF; Fulton RS; Wilson RK; Johnston M
    Genetics; 2006 Feb; 172(2):863-72. PubMed ID: 16322519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Archaeology and evolution of transfer RNA genes in the Escherichia coli genome.
    Withers M; Wernisch L; dos Reis M
    RNA; 2006 Jun; 12(6):933-42. PubMed ID: 16618964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome duplication and gene-family evolution: the case of three OXPHOS gene families.
    De Grassi A; Lanave C; Saccone C
    Gene; 2008 Sep; 421(1-2):1-6. PubMed ID: 18573316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.