These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 24001024)
21. Sorption properties of greenwaste biochar for two triazine pesticides. Zheng W; Guo M; Chow T; Bennett DN; Rajagopalan N J Hazard Mater; 2010 Sep; 181(1-3):121-6. PubMed ID: 20510513 [TBL] [Abstract][Full Text] [Related]
22. Immobilization of chlorobenzenes in soil using wheat straw biochar. Song Y; Wang F; Kengara FO; Yang X; Gu C; Jiang X J Agric Food Chem; 2013 May; 61(18):4210-7. PubMed ID: 23578388 [TBL] [Abstract][Full Text] [Related]
23. Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Gupta VK; Gupta B; Rastogi A; Agarwal S; Nayak A Water Res; 2011 Jul; 45(13):4047-55. PubMed ID: 21664639 [TBL] [Abstract][Full Text] [Related]
24. An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. Phanikrishna Sharma MV; Sadanandam G; Ratnamala A; Durga Kumari V; Subrahmanyam M J Hazard Mater; 2009 Nov; 171(1-3):626-33. PubMed ID: 19596511 [TBL] [Abstract][Full Text] [Related]
25. Pesticide adsorptivity of aged particulate matter arising from crop residue burns. Yang Y; Sheng G J Agric Food Chem; 2003 Aug; 51(17):5047-51. PubMed ID: 12903968 [TBL] [Abstract][Full Text] [Related]
26. TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light: Part 2. Silica prepared using acrylic acid emulsion. Sharma MV; Kumari VD; Subrahmanyam M J Hazard Mater; 2010 Mar; 175(1-3):1101-5. PubMed ID: 19962829 [TBL] [Abstract][Full Text] [Related]
27. Synthesis of nanostructured silicon carbide spheres from mesoporous C-SiO2 nanocomposites. Wang K; Wang H; Cheng YB Chem Commun (Camb); 2010 Jan; 46(2):303-5. PubMed ID: 20024359 [TBL] [Abstract][Full Text] [Related]
28. The pesticide module of the Root Zone Water Quality Model (RZWQM): testing and sensitivity analysis of selected algorithms for pesticide fate and surface runoff. Ma Q; Wauchope RD; Rojas KW; Ahuja LR; Ma L; Malone RW Pest Manag Sci; 2004 Mar; 60(3):240-52. PubMed ID: 15025236 [TBL] [Abstract][Full Text] [Related]
29. Adsorption and degradation of triazophos, chlorpyrifos and their main hydrolytic metabolites in paddy soil from Chaohu Lake, China. Liang B; Yang C; Gong M; Zhao Y; Zhang J; Zhu C; Jiang J; Li S J Environ Manage; 2011 Sep; 92(9):2229-34. PubMed ID: 21592646 [TBL] [Abstract][Full Text] [Related]
30. Field-scale variation in microbial activity and soil properties in relation to mineralization and sorption of pesticides in a sandy soil. Vinther FP; Brinch UC; Elsgaard L; Fredslund L; Iversen BV; Torp S; Jacobsen CS J Environ Qual; 2008; 37(5):1710-8. PubMed ID: 18689732 [TBL] [Abstract][Full Text] [Related]
31. Solidification and recycling of incinerator bottom ash through the addition of colloidal silica (SiO2) solution. Park JS; Park YJ; Heo J Waste Manag; 2007; 27(9):1207-12. PubMed ID: 17081741 [TBL] [Abstract][Full Text] [Related]
32. Analytical analysis of synthesized biosilica from bioresidues. Amutha K; Sivakumar G Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():219-22. PubMed ID: 23673239 [TBL] [Abstract][Full Text] [Related]
33. Volatilization of the pesticides chlorpyrifos and fenpropimorph from a potato crop. Leistra M; Smelt JH; Weststrate JH; van den Berg F; Aalderink R Environ Sci Technol; 2006 Jan; 40(1):96-102. PubMed ID: 16433338 [TBL] [Abstract][Full Text] [Related]
34. Risks assessment of water pollution by pesticides at local scale (PESTEAUX project): study of polluting pressure. Noel S; Billo Bah B Commun Agric Appl Biol Sci; 2009; 74(1):165-70. PubMed ID: 20218525 [TBL] [Abstract][Full Text] [Related]
35. Biochar pyrolyzed at two temperatures affects Escherichia coli transport through a sandy soil. Bolster CH; Abit SM J Environ Qual; 2012; 41(1):124-33. PubMed ID: 22218181 [TBL] [Abstract][Full Text] [Related]
36. Sensitivity analysis using a diffuse pollution hydrologic model to assess factors affecting pesticide concentrations in river water. Tani K; Matsui Y; Narita K; Ohno K; Matsushita T Water Sci Technol; 2010; 62(11):2579-89. PubMed ID: 21099045 [TBL] [Abstract][Full Text] [Related]
37. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil. Buss W; Kammann C; Koyro HW J Environ Qual; 2012; 41(4):1157-65. PubMed ID: 22751058 [TBL] [Abstract][Full Text] [Related]
38. An improved screening tool for predicting volatilization of pesticides applied to soils. Davie-Martin CL; Hageman KJ; Chin YP Environ Sci Technol; 2013 Jan; 47(2):868-76. PubMed ID: 23214927 [TBL] [Abstract][Full Text] [Related]
39. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues. Scholtz MT; Bidleman TF Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778 [TBL] [Abstract][Full Text] [Related]
40. Prediction of pesticide volatilization with PELMO 3.31. Ferrari F; Klein M; Capri E; Trevisan M Chemosphere; 2005 Jul; 60(5):705-13. PubMed ID: 15963809 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]