These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 24001107)

  • 21. In situ SEM observation of column-like and foam-like CNT array nanoindentation.
    Maschmann MR; Zhang Q; Wheeler R; Du F; Dai L; Baur J
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):648-53. PubMed ID: 21366265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trabecular bone microdamage and microstructural stresses under uniaxial compression.
    Nagaraja S; Couse TL; Guldberg RE
    J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate.
    Gholizadeh A; Shahrokhian S; zad AI; Mohajerzadeh S; Vosoughi M; Darbari S; Sanaee Z
    Biosens Bioelectron; 2012 Jan; 31(1):110-5. PubMed ID: 22040749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance.
    Gholizadeh A; Shahrokhian S; Iraji zad A; Mohajerzadeh S; Vosoughi M; Darbari S; Koohsorkhi J; Mehran M
    Anal Chem; 2012 Jul; 84(14):5932-8. PubMed ID: 22742619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical analysis of penile erections: penile buckling behaviour under axial loading and radial compression.
    Timm GW; Elayaperumal S; Hegrenes J
    BJU Int; 2008 Jul; 102(1):76-84. PubMed ID: 18336615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes.
    Xu B; Ye ML; Yu YX; Zhang WD
    Anal Chim Acta; 2010 Jul; 674(1):20-6. PubMed ID: 20638494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling mechanical energy storage in springs based on carbon nanotubes.
    Hill FA; Havel TF; Livermore C
    Nanotechnology; 2009 Jun; 20(25):255704. PubMed ID: 19491467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pulsed growth of vertically aligned nanotube arrays with variable density.
    Jackson JJ; Puretzky AA; More KL; Rouleau CM; Eres G; Geohegan DB
    ACS Nano; 2010 Dec; 4(12):7573-81. PubMed ID: 21128670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rate-independent dissipation and loading direction effects in compressed carbon nanotube arrays.
    Raney JR; Fraternali F; Daraio C
    Nanotechnology; 2013 Jun; 24(25):255707. PubMed ID: 23727816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the shear force of single cancer cells by vertically aligned carbon nanotubes suitable for metastasis diagnosis.
    Abdolahad M; Mohajerzadeh S; Janmaleki M; Taghinejad H; Taghinejad M
    Integr Biol (Camb); 2013 Mar; 5(3):535-42. PubMed ID: 23340873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing.
    Yilmazoglu O; Popp A; Pavlidis D; Schneider JJ; Garth D; Schüttler F; Battenberg G
    Nanotechnology; 2012 Mar; 23(8):085501. PubMed ID: 22293280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coordination number model to quantify packing morphology of aligned nanowire arrays.
    Stein IY; Wardle BL
    Phys Chem Chem Phys; 2013 Mar; 15(11):4033-40. PubMed ID: 23386243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression.
    Suhr J; Victor P; Ci L; Sreekala S; Zhang X; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2007 Jul; 2(7):417-21. PubMed ID: 18654325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A nonlocal constitutive model for trabecular bone softening in compression.
    Charlebois M; Jirásek M; Zysset PK
    Biomech Model Mechanobiol; 2010 Oct; 9(5):597-611. PubMed ID: 20238139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Very-high-strength (60-GPa) carbon nanotube fiber design based on molecular dynamics simulations.
    Cornwell CF; Welch CR
    J Chem Phys; 2011 May; 134(20):204708. PubMed ID: 21639468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental study of cancellous bone under large strains and a constitutive probabilistic model.
    Kefalas V; Eftaxiopoulos DA
    J Mech Behav Biomed Mater; 2012 Feb; 6():41-52. PubMed ID: 22301172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of dynamic strain hardening in polymer nanocomposites.
    Carey BJ; Patra PK; Ci L; Silva GG; Ajayan PM
    ACS Nano; 2011 Apr; 5(4):2715-22. PubMed ID: 21410237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational analysis of microstructure of ultra high molecular weight polyethylene for total joint replacement.
    Seymour KM; Atwood SA
    J Biomech Eng; 2013 Feb; 135(2):021017. PubMed ID: 23445062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomineralization of superhydrophilic vertically aligned carbon nanotubes.
    Marsi TC; Santos TG; Pacheco-Soares C; Corat EJ; Marciano FR; Lobo AO
    Langmuir; 2012 Mar; 28(9):4413-24. PubMed ID: 22320358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite element analysis of indentation tests on pyrolytic carbon.
    Gilpin CB; Haubold AD; Ely JL
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S72-8. PubMed ID: 8794040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.