These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 24001115)
1. Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores. Ho MC; Casciola M; Levine ZA; Vernier PT J Phys Chem B; 2013 Oct; 117(39):11633-40. PubMed ID: 24001115 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics of water and monovalent-ions transportation mechanisms of pentameric sarcolipin. Cao Y; Wu X; Lee I; Wang X Proteins; 2016 Jan; 84(1):73-81. PubMed ID: 26522287 [TBL] [Abstract][Full Text] [Related]
3. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. Gurtovenko AA; Vattulainen I J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878 [TBL] [Abstract][Full Text] [Related]
4. Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. Im W; Roux B J Mol Biol; 2002 Jun; 319(5):1177-97. PubMed ID: 12079356 [TBL] [Abstract][Full Text] [Related]
5. Size-controlled nanopores in lipid membranes with stabilizing electric fields. Fernández ML; Risk M; Reigada R; Vernier PT Biochem Biophys Res Commun; 2012 Jun; 423(2):325-30. PubMed ID: 22659739 [TBL] [Abstract][Full Text] [Related]
6. Validating affinities for ion-lipid association from simulation against experiment. Klasczyk B; Knecht V J Phys Chem A; 2011 Sep; 115(38):10587-95. PubMed ID: 21859136 [TBL] [Abstract][Full Text] [Related]
7. Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations. Rems L; Tarek M; Casciola M; Miklavčič D Bioelectrochemistry; 2016 Dec; 112():112-24. PubMed ID: 27091314 [TBL] [Abstract][Full Text] [Related]
8. Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance. Casciola M; Kasimova MA; Rems L; Zullino S; Apollonio F; Tarek M Bioelectrochemistry; 2016 Jun; 109():108-16. PubMed ID: 26883056 [TBL] [Abstract][Full Text] [Related]
9. Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. Danelon C; Suenaga A; Winterhalter M; Yamato I Biophys Chem; 2003 Jul; 104(3):591-603. PubMed ID: 12914905 [TBL] [Abstract][Full Text] [Related]
10. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores. Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264 [TBL] [Abstract][Full Text] [Related]
11. Secondary water pore formation for proton transport in a ClC exchanger revealed by an atomistic molecular-dynamics simulation. Ko YJ; Jo WH Biophys J; 2010 May; 98(10):2163-9. PubMed ID: 20483324 [TBL] [Abstract][Full Text] [Related]
12. Ion exclusion and electrokinetic effects resulting from electro-osmotic flow of salt solutions in charged silica nanopores. Haria NR; Lorenz CD Phys Chem Chem Phys; 2012 May; 14(17):5935-44. PubMed ID: 22441317 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulations of asymmetric NaCl and KCl solutions separated by phosphatidylcholine bilayers: potential drops and structural changes induced by strong Na+-lipid interactions and finite size effects. Lee SJ; Song Y; Baker NA Biophys J; 2008 May; 94(9):3565-76. PubMed ID: 18222999 [TBL] [Abstract][Full Text] [Related]
14. Ionic transport through a protein nanopore: a Coarse-Grained Molecular Dynamics Study. Basdevant N; Dessaux D; Ramirez R Sci Rep; 2019 Oct; 9(1):15740. PubMed ID: 31673049 [TBL] [Abstract][Full Text] [Related]
15. Mechanosensitive channel MscS in the open state: modeling of the transition, explicit simulations, and experimental measurements of conductance. Anishkin A; Kamaraju K; Sukharev S J Gen Physiol; 2008 Jul; 132(1):67-83. PubMed ID: 18591417 [TBL] [Abstract][Full Text] [Related]
16. Structure, dynamics, and hydration of POPC/POPS bilayers suspended in NaCl, KCl, and CsCl solutions. Jurkiewicz P; Cwiklik L; Vojtíšková A; Jungwirth P; Hof M Biochim Biophys Acta; 2012 Mar; 1818(3):609-16. PubMed ID: 22155683 [TBL] [Abstract][Full Text] [Related]
17. Specific binding of chloride ions to lipid vesicles and implications at molecular scale. Knecht V; Klasczyk B Biophys J; 2013 Feb; 104(4):818-24. PubMed ID: 23442960 [TBL] [Abstract][Full Text] [Related]
18. Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. Gurtovenko AA; Vattulainen I J Am Chem Soc; 2005 Dec; 127(50):17570-1. PubMed ID: 16351063 [TBL] [Abstract][Full Text] [Related]
19. Interaction of a calix[4]arene derivative with a DOPC bilayer: biomolecular simulations towards chloride transport. Costa PJ; Marques I; Félix V Biochim Biophys Acta; 2014 Mar; 1838(3):890-901. PubMed ID: 24316169 [TBL] [Abstract][Full Text] [Related]
20. Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Gurtovenko AA; Vattulainen I Biophys J; 2007 Mar; 92(6):1878-90. PubMed ID: 17208976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]