These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 24001370)

  • 1. Engineering the polyproline II propensity of a class II major histocompatibility complex ligand peptide.
    Unudurthi SD; Hotta K; Kim CY
    ACS Chem Biol; 2013 Nov; 8(11):2383-7. PubMed ID: 24001370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of gliadin peptide analogues with low affinity for the celiac disease associated HLA-DQ2 protein.
    Fraccalvieri D; Motta S; Galliani G; Cavaletti L; Bonati L
    Mol Biosyst; 2014 Aug; 10(8):2064-73. PubMed ID: 24841193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular dichroism and nuclear magnetic resonance spectroscopic analysis of immunogenic gluten peptides and their analogs.
    Parrot I; Huang PC; Khosla C
    J Biol Chem; 2002 Nov; 277(47):45572-8. PubMed ID: 12324465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helix, sheet, and polyproline II frequencies and strong nearest neighbor effects in a restricted coil library.
    Jha AK; Colubri A; Zaman MH; Koide S; Sosnick TR; Freed KF
    Biochemistry; 2005 Jul; 44(28):9691-702. PubMed ID: 16008354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis and evaluation of high-affinity binders for the celiac disease associated HLA-DQ2 molecule.
    Kapoerchan VV; Wiesner M; Hillaert U; Drijfhout JW; Overhand M; Alard P; van der Marel GA; Overkleeft HS; Koning F
    Mol Immunol; 2010 Feb; 47(5):1091-7. PubMed ID: 19962195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-cell response to gluten in patients with HLA-DQ2.2 reveals requirement of peptide-MHC stability in celiac disease.
    Bodd M; Kim CY; Lundin KE; Sollid LM
    Gastroenterology; 2012 Mar; 142(3):552-61. PubMed ID: 22108197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of new high-affinity peptide ligands for human leukocyte antigen-DQ2 using a positional scanning peptide library.
    Jüse U; van de Wal Y; Koning F; Sollid LM; Fleckenstein B
    Hum Immunol; 2010 May; 71(5):475-81. PubMed ID: 20105447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the structure of bound peptide ligands to major histocompatibility complex.
    Tong JC; Tan TW; Ranganathan S
    Protein Sci; 2004 Sep; 13(9):2523-32. PubMed ID: 15322290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for role of transmembrane helix-helix interactions in the assembly of the Class II major histocompatibility complex.
    King G; Dixon AM
    Mol Biosyst; 2010 Sep; 6(9):1650-61. PubMed ID: 20379596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells.
    de Kauwe AL; Chen Z; Anderson RP; Keech CL; Price JD; Wijburg O; Jackson DC; Ladhams J; Allison J; McCluskey J
    J Immunol; 2009 Jun; 182(12):7440-50. PubMed ID: 19494267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of HLA-DQ2-mediated antigen presentation by analogues of a high affinity 33-residue peptide from alpha2-gliadin.
    Xia J; Siegel M; Bergseng E; Sollid LM; Khosla C
    J Am Chem Soc; 2006 Feb; 128(6):1859-67. PubMed ID: 16464085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide linkage to the α-subunit of MHCII creates a stably inverted antigen presentation complex.
    Schlundt A; Günther S; Sticht J; Wieczorek M; Roske Y; Heinemann U; Freund C
    J Mol Biol; 2012 Oct; 423(3):294-302. PubMed ID: 22820093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational flexibility of the MHC class I alpha1-alpha2 domain in peptide bound and free states: a molecular dynamics simulation study.
    Zacharias M; Springer S
    Biophys J; 2004 Oct; 87(4):2203-14. PubMed ID: 15454423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide binding and antigen presentation by class II histocompatibility glycoproteins.
    Jensen PE
    Biopolymers; 1997; 43(4):303-22. PubMed ID: 9316394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic potential as a tool to understand interactions between malaria vaccine candidate peptides and MHC II molecules.
    Agudelo WA; Galindo JF; Patarroyo ME
    Biochem Biophys Res Commun; 2011 Jul; 410(3):410-5. PubMed ID: 21672519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for peptide in determining MHC class II structure.
    Sadegh-Nasseri S; Germain RN
    Nature; 1991 Sep; 353(6340):167-70. PubMed ID: 1653903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A polymorphic pocket at the P10 position contributes to peptide binding specificity in class II MHC proteins.
    Zavala-Ruiz Z; Strug I; Anderson MW; Gorski J; Stern LJ
    Chem Biol; 2004 Oct; 11(10):1395-402. PubMed ID: 15489166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexibility of the MHC class II peptide binding cleft in the bound, partially filled, and empty states: a molecular dynamics simulation study.
    Yaneva R; Springer S; Zacharias M
    Biopolymers; 2009 Jan; 91(1):14-27. PubMed ID: 18767126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides.
    Siligardi G; Drake AF
    Biopolymers; 1995; 37(4):281-92. PubMed ID: 7540055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.