These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24001554)

  • 1. Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids.
    Nordell E; Hansson AB; Karlsson M
    Waste Manag; 2013 Dec; 33(12):2659-63. PubMed ID: 24001554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesophilic co-digestion of dairy manure and lipid rich solid slaughterhouse wastes: process efficiency, limitations and floating granules formation.
    Pitk P; Palatsi J; Kaparaju P; Fernández B; Vilu R
    Bioresour Technol; 2014 Aug; 166():168-77. PubMed ID: 24907576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): influence of heat and pressure pre-treatment in biogas yield.
    Cuetos MJ; Gómez X; Otero M; Morán A
    Waste Manag; 2010 Oct; 30(10):1780-9. PubMed ID: 20176467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long chain fatty acids (LCFA) evolution for inhibition forecasting during anaerobic treatment of lipid-rich wastes: Case of milk-fed veal slaughterhouse waste.
    Rodríguez-Méndez R; Le Bihan Y; Béline F; Lessard P
    Waste Manag; 2017 Sep; 67():51-58. PubMed ID: 28578858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using slaughterhouse waste in a biochemical-based biorefinery - results from pilot scale tests.
    Schwede S; Thorin E; Lindmark J; Klintenberg P; Jääskeläinen A; Suhonen A; Laatikainen R; Hakalehto E
    Environ Technol; 2017 May; 38(10):1275-1284. PubMed ID: 27575339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic digestion of lipid-rich swine slaughterhouse waste: Methane production performance, long-chain fatty acids profile and predominant microorganisms.
    Ning Z; Zhang H; Li W; Zhang R; Liu G; Chen C
    Bioresour Technol; 2018 Dec; 269():426-433. PubMed ID: 30268045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation and anaerobic batch degradation of materials accumulating in anaerobic digesters treating poultry slaughterhouse waste.
    Salminen E; Einola J; Rintala J
    Environ Technol; 2001 May; 22(5):577-85. PubMed ID: 11424735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield.
    Martín-González L; Colturato LF; Font X; Vicent T
    Waste Manag; 2010 Oct; 30(10):1854-9. PubMed ID: 20400285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of slaughterhouse waste on fermentative H2 production from food waste: preliminary results.
    Boni MR; Sbaffoni S; Tuccinardi L
    Waste Manag; 2013 Jun; 33(6):1362-71. PubMed ID: 23548510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.
    Ho L; Ho G
    Water Res; 2012 Sep; 46(14):4339-50. PubMed ID: 22739499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogas cleaning and upgrading with natural zeolites from tuffs.
    Paolini V; Petracchini F; Guerriero E; Bencini A; Drigo S
    Environ Technol; 2016; 37(11):1418-27. PubMed ID: 26563442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: influence of aggregate formation on process stability.
    Kleyböcker A; Liebrich M; Kasina M; Kraume M; Wittmaier M; Würdemann H
    Waste Manag; 2012 Jun; 32(6):1122-30. PubMed ID: 22405750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic batch degradation of solid poultry slaughterhouse waste.
    Salminen E; Rintala J; Lokshina LY; Vavilin VA
    Water Sci Technol; 2000; 41(3):33-41. PubMed ID: 11386301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure.
    Ye J; Li D; Sun Y; Wang G; Yuan Z; Zhen F; Wang Y
    Waste Manag; 2013 Dec; 33(12):2653-8. PubMed ID: 23790673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme research and applications in biotechnological intensification of biogas production.
    Parawira W
    Crit Rev Biotechnol; 2012 Jun; 32(2):172-86. PubMed ID: 21851320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slaughterhouse fatty waste saponification to increase biogas yield.
    Battimelli A; Torrijos M; Moletta R; Delgenès JP
    Bioresour Technol; 2010 May; 101(10):3388-93. PubMed ID: 20074941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction.
    Nges IA; Mbatia B; Björnsson L
    J Environ Manage; 2012 Nov; 110():159-65. PubMed ID: 22784804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes.
    Bayr S; Rantanen M; Kaparaju P; Rintala J
    Bioresour Technol; 2012 Jan; 104():28-36. PubMed ID: 22074907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge.
    Tada C; Yang Y; Hanaoka T; Sonoda A; Ooi K; Sawayama S
    Bioresour Technol; 2005 Mar; 96(4):459-64. PubMed ID: 15491827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.