BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24001932)

  • 1. A unified EM approach to bladder wall segmentation with coupled level-set constraints.
    Han H; Li L; Duan C; Zhang H; Zhao Y; Liang Z
    Med Image Anal; 2013 Dec; 17(8):1192-205. PubMed ID: 24001932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A coupled level set framework for bladder wall segmentation with application to MR cystography.
    Duan C; Liang Z; Bao S; Zhu H; Wang S; Zhang G; Chen JJ; Lu H
    IEEE Trans Med Imaging; 2010 Mar; 29(3):903-15. PubMed ID: 20199924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging.
    Fu JC; Chen CC; Chai JW; Wong ST; Li IC
    Comput Med Imaging Graph; 2010 Jun; 34(4):308-20. PubMed ID: 20042313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI.
    Wels M; Carneiro G; Aplas A; Huber M; Hornegger J; Comaniciu D
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):67-75. PubMed ID: 18979733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
    Chen M; Yan Q; Qin M
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):200-211. PubMed ID: 29072503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adaptive window-setting scheme for segmentation of bladder tumor surface via MR cystography.
    Duan C; Yuan K; Liu F; Xiao P; Lv G; Liang Z
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):720-9. PubMed ID: 22645274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bladder segmentation in MRI images using active region growing model.
    Garnier C; Ke W; Dillenseger JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5702-5. PubMed ID: 22255634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation.
    Warfield SK; Zou KH; Wells WM
    IEEE Trans Med Imaging; 2004 Jul; 23(7):903-21. PubMed ID: 15250643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved variational level set method for MR image segmentation and bias field correction.
    Zhan T; Zhang J; Xiao L; Chen Y; Wei Z
    Magn Reson Imaging; 2013 Apr; 31(3):439-47. PubMed ID: 23219273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collaborative multi organ segmentation by integrating deformable and graphical models.
    UzunbaĊŸ MG; Chen C; Zhang S; Poh KM; Li K; Metaxas D
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):157-64. PubMed ID: 24579136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Analysis of Bladder Wall Thickness for Magnetic Resonance Cystoscopy.
    Zhang X; Liu Y; Yang Z; Tian Q; Zhang G; Xiao D; Cui G; Lu H
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2402-9. PubMed ID: 25955985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A class-adaptive spatially variant mixture model for image segmentation.
    Nikou C; Galatsanos NP; Likas AC
    IEEE Trans Image Process; 2007 Apr; 16(4):1121-30. PubMed ID: 17405442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating priors on expert performance parameters for segmentation validation and label fusion: a maximum a posteriori STAPLE.
    Commowick O; Warfield SK
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):25-32. PubMed ID: 20879379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.
    Gao S; van 't Klooster R; Brandts A; Roes SD; Alizadeh Dehnavi R; de Roos A; Westenberg JJ; van der Geest RJ
    J Magn Reson Imaging; 2017 Jan; 45(1):215-228. PubMed ID: 27251901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive segmentation of textured images by using the coupled Markov random field model.
    Xia Y; Feng D; Zhao R
    IEEE Trans Image Process; 2006 Nov; 15(11):3559-66. PubMed ID: 17076413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images.
    Wu S; Weinstein SP; Conant EF; Schnall MD; Kontos D
    Med Phys; 2013 Apr; 40(4):042301. PubMed ID: 23556914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.
    Bricq S; Collet Ch; Armspach JP
    Med Image Anal; 2008 Dec; 12(6):639-52. PubMed ID: 18440268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated segmentation of mouse brain images using extended MRF.
    Bae MH; Pan R; Wu T; Badea A
    Neuroimage; 2009 Jul; 46(3):717-25. PubMed ID: 19236923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images.
    Greenspan H; Ruf A; Goldberger J
    IEEE Trans Med Imaging; 2006 Sep; 25(9):1233-45. PubMed ID: 16967808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LOCUS: local cooperative unified segmentation of MRI brain scans.
    Scherrer B; Dojat M; Forbes F; Garbay C
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):219-27. PubMed ID: 18051062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.