BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24002018)

  • 1. Contractile responses of human thyroid arteries to vasopressin.
    Vila JM; Aldasoro M; Segarra G; Martínez-León JB; Mauricio MD; Lluch S; Medina P
    Life Sci; 2013 Oct; 93(15):525-9. PubMed ID: 24002018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium-dependent relaxation of human saphenous veins in response to vasopressin and desmopressin.
    Aldasoro M; Medina P; Vila JM; Otero E; Martinez-León JB; Lluch S
    J Vasc Surg; 1997 Apr; 25(4):696-703. PubMed ID: 9129626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation of human isolated mesenteric arteries by vasopressin and desmopressin.
    Martínez MC; Vila JM; Aldasoro M; Medina P; Flor B; Lluch S
    Br J Pharmacol; 1994 Oct; 113(2):419-24. PubMed ID: 7834191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric artery.
    Noguera I; Medina P; Segarra G; Martínez MC; Aldasoro M; Vila JM; Lluch S
    Br J Pharmacol; 1997 Oct; 122(3):431-8. PubMed ID: 9351498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased contraction to noradrenaline by vasopressin in human renal arteries.
    Segarra G; Medina P; Vila JM; Chuan P; Domenech C; Lluch S
    J Hypertens; 2002 Jul; 20(7):1373-9. PubMed ID: 12131534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelium-independent contractions of human cerebral arteries in response to vasopressin.
    Martín de Aguilera E; Vila JM; Irurzun A; Martínez MC; Martínez Cuesta MA; Lluch S
    Stroke; 1990 Dec; 21(12):1689-93. PubMed ID: 2264075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-dependent responses in human isolated thyroid arteries from donors.
    Torondel B; Vila JM; Segarra G; Lluch P; Medina P; Martínez-León J; Ortega J; Lluch S
    J Endocrinol; 2004 Jun; 181(3):379-84. PubMed ID: 15171685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of endothelial nitric oxide on adrenergic contractile responses of human cerebral arteries.
    Aldasoro M; Martínez C; Vila JM; Medina P; Lluch S
    J Cereb Blood Flow Metab; 1996 Jul; 16(4):623-8. PubMed ID: 8964801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of aspirin, nimesulide, and SC-560 on vasopressin-induced contraction of human gastroepiploic artery and saphenous vein.
    Aldasoro M; Mauricio MD; Serna E; Cortina B; Segarra G; Medina P; Vila JM; Flor B; Lluch S
    Crit Care Med; 2008 Jan; 36(1):193-7. PubMed ID: 18090373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses to vasopressin and desmopressin of human cerebral arteries.
    Martinez MC; Aldasoro M; Vila JM; Medina P; Lluch S
    J Pharmacol Exp Ther; 1994 Aug; 270(2):622-7. PubMed ID: 8071854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial L-arginine pathway and regional cerebral arterial reactivity to vasopressin.
    Katusić ZS
    Am J Physiol; 1992 May; 262(5 Pt 2):H1557-62. PubMed ID: 1590460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contractile responses of human deferential artery and vas deferens to vasopressin.
    Medina P; Martínez MC; Aldasoro M; Vila JM; Chuan P; Lluch S
    Eur J Pharmacol; 1996 Apr; 300(3):221-5. PubMed ID: 8739212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nitric oxide on responses of the human uterine arteries to vasopressin.
    Kostrzewska A; Modzelewska B; Kleszczewski T; Batra S
    Vascul Pharmacol; 2008 Jan; 48(1):9-13. PubMed ID: 17996497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human vascular vasopressin receptors: analysis with selective vasopressin receptor antagonists.
    Ohlstein EH; Berkowitz BA
    J Pharmacol Exp Ther; 1986 Dec; 239(3):737-41. PubMed ID: 2948008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional differences in the arterial response to vasopressin: role of endothelial nitric oxide.
    García-Villalón AL; Garcia JL; Fernández N; Monge L; Gómez B; Diéguez G
    Br J Pharmacol; 1996 Aug; 118(7):1848-54. PubMed ID: 8842453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological evaluation of d(CH2)5Tyr(Me)AVP as an antagonist of vasopressin-induced contraction of the isolated rat caudal artery.
    Clineschmidt BV; Lis EV
    Arch Int Pharmacodyn Ther; 1986 Nov; 284(1):72-84. PubMed ID: 2950833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of vasopressin on human renal arteries.
    Medina P; Vila JM; Martinez MC; Aldasoro M; Chuan P; Lluch S
    Eur J Clin Invest; 1996 Nov; 26(11):966-72. PubMed ID: 8957201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxytocin causes endothelium-dependent relaxations of canine basilar arteries by activating V1-vasopressinergic receptors.
    Katusic ZS; Shepherd JT; Vanhoutte PM
    J Pharmacol Exp Ther; 1986 Jan; 236(1):166-70. PubMed ID: 3001282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of vasopressin on adrenergic neurotransmission in human penile blood vessels.
    Segarra G; Medina P; Domenech C; Vila JM; Martínez-León JB; Aldasoro M; Lluch S
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1315-20. PubMed ID: 9732394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma levels and vascular effects of vasopressin in patients undergoing coronary artery bypass grafting.
    Novella S; Martínez AC; Pagán RM; Hernández M; García-Sacristán A; González-Pinto A; González-Santos JM; Benedito S
    Eur J Cardiothorac Surg; 2007 Jul; 32(1):69-76. PubMed ID: 17507236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.