BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 24002212)

  • 21. Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages.
    Hudson AJ; McWatters DC; Bowser BA; Moore AN; Larue GE; Roy SW; Russell AG
    BMC Evol Biol; 2019 Aug; 19(1):162. PubMed ID: 31375061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of snRNAs in spliceosomal catalysis.
    Valadkhan S
    Prog Mol Biol Transl Sci; 2013; 120():195-228. PubMed ID: 24156945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the major spliceosomal RNAs in Dictyostelium discoideum reveals developmentally regulated U2 variants and polyadenylated snRNAs.
    Hinas A; Larsson P; Avesson L; Kirsebom LA; Virtanen A; Söderbom F
    Eukaryot Cell; 2006 Jun; 5(6):924-34. PubMed ID: 16757740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antisense oligonucleotide binding to U5 snRNP induces a conformational change that exposes the conserved loop of U5 snRNA.
    Ast G; Weiner AM
    Nucleic Acids Res; 1997 Sep; 25(17):3508-13. PubMed ID: 9254712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incorporation of 5-fluorouracil into U2 and U6 snRNA inhibits mRNA precursor splicing.
    Lenz HJ; Manno DJ; Danenberg KD; Danenberg PV
    J Biol Chem; 1994 Dec; 269(50):31962-8. PubMed ID: 7989372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural characterization of the fission yeast U5.U2/U6 spliceosome complex.
    Ohi MD; Ren L; Wall JS; Gould KL; Walz T
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3195-200. PubMed ID: 17360628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis.
    Jurica MS; Licklider LJ; Gygi SR; Grigorieff N; Moore MJ
    RNA; 2002 Apr; 8(4):426-39. PubMed ID: 11991638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A tertiary interaction detected in a human U2-U6 snRNA complex assembled in vitro resembles a genetically proven interaction in yeast.
    Valadkhan S; Manley JL
    RNA; 2000 Feb; 6(2):206-19. PubMed ID: 10688360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New tertiary constraints between the RNA components of active yeast spliceosomes: a photo-crosslinking study.
    Ryan DE; Kim CH; Murray JB; Adams CJ; Stockley PG; Abelson J
    RNA; 2004 Aug; 10(8):1251-65. PubMed ID: 15272121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive in vivo RNA-binding site analyses reveal a role of Prp8 in spliceosomal assembly.
    Li X; Zhang W; Xu T; Ramsey J; Zhang L; Hill R; Hansen KC; Hesselberth JR; Zhao R
    Nucleic Acids Res; 2013 Apr; 41(6):3805-18. PubMed ID: 23393194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome.
    Madhani HD; Guthrie C
    Cell; 1992 Nov; 71(5):803-17. PubMed ID: 1423631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly diverged U4 and U6 small nuclear RNAs required for splicing rare AT-AC introns.
    Tarn WY; Steitz JA
    Science; 1996 Sep; 273(5283):1824-32. PubMed ID: 8791582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of the snRNAs in spliceosomal active site.
    Valadkhan S
    RNA Biol; 2010; 7(3):345-53. PubMed ID: 20458185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutation in the U2 snRNA influences exon interactions of U5 snRNA loop 1 during pre-mRNA splicing.
    McGrail JC; Tatum EM; O'Keefe RT
    EMBO J; 2006 Aug; 25(16):3813-22. PubMed ID: 16888626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic interactions between the yeast RNA helicase homolog Prp16 and spliceosomal snRNAs identify candidate ligands for the Prp16 RNA-dependent ATPase.
    Madhani HD; Guthrie C
    Genetics; 1994 Jul; 137(3):677-87. PubMed ID: 8088513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of the central junction in folding topology of the protein-free human U2-U6 snRNA complex.
    Chu H; Perea W; Greenbaum NL
    RNA; 2020 Jul; 26(7):836-850. PubMed ID: 32220895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards understanding the catalytic core structure of the spliceosome.
    Butcher SE; Brow DA
    Biochem Soc Trans; 2005 Jun; 33(Pt 3):447-9. PubMed ID: 15916538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spliceosomal introns in conserved sequences of U1 and U5 small nuclear RNA genes in yeast Rhodotorula hasegawae.
    Takahashi Y; Tani T; Ohshima Y
    J Biochem; 1996 Sep; 120(3):677-83. PubMed ID: 8902636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational identification of four spliceosomal snRNAs from the deep-branching eukaryote Giardia intestinalis.
    Chen XS; White WT; Collins LJ; Penny D
    PLoS One; 2008 Aug; 3(8):e3106. PubMed ID: 18769729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of synthetic lethality reveals genetic interactions between the GTPase Snu114p and snRNAs in the catalytic core of the Saccharomyces cerevisiae spliceosome.
    Frazer LN; Lovell SC; O'Keefe RT
    Genetics; 2009 Oct; 183(2):497-515-1SI-4SI. PubMed ID: 19620389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.