These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24002549)

  • 1. Structure and expression of barley starch phosphorylase genes.
    Ma J; Jiang QT; Zhang XW; Lan XJ; Pu ZE; Wei YM; Liu C; Lu ZX; Zheng YL
    Planta; 2013 Dec; 238(6):1081-93. PubMed ID: 24002549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Study of Starch Phosphorylase Genes and Encoded Proteins in Various Monocots and Dicots with Emphasis on Maize.
    Yu G; Shoaib N; Xie Y; Liu L; Mughal N; Li Y; Huang H; Zhang N; Zhang J; Liu Y; Hu Y; Liu H; Huang Y
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of starch phosphorylases in barley grains.
    Higgins JE; Kosar-Hashemi B; Li Z; Howitt CA; Larroque O; Flanagan B; Morell MK; Rahman S
    J Sci Food Agric; 2013 Jul; 93(9):2137-45. PubMed ID: 23288583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved structure and varied expression reveal key roles of phosphoglucan phosphatase gene starch excess 4 in barley.
    Ma J; Jiang QT; Wei L; Yang Q; Zhang XW; Peng YY; Chen GY; Wei YM; Liu C; Zheng YL
    Planta; 2014 Dec; 240(6):1179-90. PubMed ID: 25100144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of plastidial starch phosphorylase in Triticum aestivum L. endosperm.
    Tickle P; Burrell MM; Coates SA; Emes MJ; Tetlow IJ; Bowsher CG
    J Plant Physiol; 2009 Sep; 166(14):1465-78. PubMed ID: 19524321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development.
    Cuesta-Seijo JA; Ruzanski C; Krucewicz K; Meier S; Hägglund P; Svensson B; Palcic MM
    PLoS One; 2017; 12(4):e0175488. PubMed ID: 28407006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family.
    Pearce S; Huttly AK; Prosser IM; Li YD; Vaughan SP; Gallova B; Patil A; Coghill JA; Dubcovsky J; Hedden P; Phillips AL
    BMC Plant Biol; 2015 Jun; 15():130. PubMed ID: 26044828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homodimers and heterodimers of Pho1-type phosphorylase isoforms in Solanum tuberosum L. as revealed by sequence-specific antibodies.
    Albrecht T; Greve B; Pusch K; Kossmann J; Buchner P; Wobus U; Steup M
    Eur J Biochem; 1998 Jan; 251(1-2):343-52. PubMed ID: 9492303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Functions and Pathways of Plastidial Starch Phosphorylase (PHO1) in Starch Metabolism: Current and Future Perspectives.
    Shoaib N; Liu L; Ali A; Mughal N; Yu G; Huang Y
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and expression of phosphoglucan phosphatase genes of Like Sex Four1 and Like Sex Four2 in barley.
    Ma J; Gao S; Jiang QT; Yang Q; Sun M; Wang JR; Qi PF; Liu YX; Li W; Pu ZE; Lan XJ; Wei YM; Liu C; Zheng YL
    Genetica; 2016 Jun; 144(3):313-23. PubMed ID: 27154345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structural organisation of the gene encoding class II starch synthase of wheat and barley and the evolution of the genes encoding starch synthases in plants.
    Li Z; Sun F; Xu S; Chu X; Mukai Y; Yamamoto M; Ali S; Rampling L; Kosar-Hashemi B; Rahman S; Morell MK
    Funct Integr Genomics; 2003 Mar; 3(1-2):76-85. PubMed ID: 12590345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of the TaWTG1 in bread wheat (Triticum aestivum L.).
    Zhang H; Ma J; Liu J; Mu Y; Tang H; Liu Y; Chen G; Jiang Q; Chen G; Wei Y; Zheng Y; Lan X
    Gene; 2018 Dec; 678():23-32. PubMed ID: 30086362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The study of two barley type I-like MADS-box genes as potential targets of epigenetic regulation during seed development.
    Kapazoglou A; Engineer C; Drosou V; Kalloniati C; Tani E; Tsaballa A; Kouri ED; Ganopoulos I; Flemetakis E; Tsaftaris AS
    BMC Plant Biol; 2012 Sep; 12():166. PubMed ID: 22985436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Starch branching enzymes in sorghum (Sorghum bicolor) and barley (Hordeum vulgare): comparative analyses of enzyme structure and gene expression.
    Mutisya J; Sathish P; Sun C; Andersson L; Ahlandsberg S; Baguma Y; Palmqvist S; Odhiambo B; Aman P; Jansson C
    J Plant Physiol; 2003 Aug; 160(8):921-30. PubMed ID: 12964868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of transcription factors that bind to the 5'-UTR of the barley PHO2 gene.
    Sega P; Kruszka K; Szewc Ł; Szweykowska-Kulińska Z; Pacak A
    Plant Mol Biol; 2020 Jan; 102(1-2):73-88. PubMed ID: 31745747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene.
    Madsen CK; Dionisio G; Holme IB; Holm PB; Brinch-Pedersen H
    J Exp Bot; 2013 Aug; 64(11):3111-23. PubMed ID: 23918958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rice Plastidial Phosphorylase Participates Directly in Both Sink and Source Processes.
    Koper K; Hwang SK; Wood M; Singh S; Cousins A; Kirchhoff H; Okita TW
    Plant Cell Physiol; 2021 Mar; 62(1):125-142. PubMed ID: 33237266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of barley Prp1 gene and its expression during seed development and under abiotic stress.
    Jiang QT; Liu T; Ma J; Wei YM; Lu ZX; Lan XJ; Dai SF; Zheng YL
    Genetica; 2011 Oct; 139(10):1283-92. PubMed ID: 22290495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions.
    Seiler C; Harshavardhan VT; Rajesh K; Reddy PS; Strickert M; Rolletschek H; Scholz U; Wobus U; Sreenivasulu N
    J Exp Bot; 2011 May; 62(8):2615-32. PubMed ID: 21289079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants: expression analysis and immunochemical characterization.
    Albrecht T; Koch A; Lode A; Greve B; Schneider-Mergener J; Steup M
    Planta; 2001 Aug; 213(4):602-13. PubMed ID: 11556793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.