These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 24002588)
1. CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Mandoli A; Singh AA; Jansen PW; Wierenga AT; Riahi H; Franci G; Prange K; Saeed S; Vellenga E; Vermeulen M; Stunnenberg HG; Martens JH Leukemia; 2014 Apr; 28(4):770-8. PubMed ID: 24002588 [TBL] [Abstract][Full Text] [Related]
2. Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knock-in mice. Hyde RK; Zhao L; Alemu L; Liu PP Leukemia; 2015 Aug; 29(8):1771-8. PubMed ID: 25742748 [TBL] [Abstract][Full Text] [Related]
3. HDAC1 Is a Required Cofactor of CBFβ-SMMHC and a Potential Therapeutic Target in Inversion 16 Acute Myeloid Leukemia. Richter LE; Wang Y; Becker ME; Coburn RA; Williams JT; Amador C; Hyde RK Mol Cancer Res; 2019 Jun; 17(6):1241-1252. PubMed ID: 30814129 [TBL] [Abstract][Full Text] [Related]
4. RUNX1 and CBFβ-SMMHC transactivate target genes together in abnormal myeloid progenitors for leukemia development. Zhen T; Cao Y; Ren G; Zhao L; Hyde RK; Lopez G; Feng D; Alemu L; Zhao K; Liu PP Blood; 2020 Nov; 136(21):2373-2385. PubMed ID: 32929473 [TBL] [Abstract][Full Text] [Related]
5. Gata2 deficiency delays leukemogenesis while contributing to aggressive leukemia phenotype in Cbfb-MYH11 knockin mice. Saida S; Zhen T; Kim E; Yu K; Lopez G; McReynolds LJ; Liu PP Leukemia; 2020 Mar; 34(3):759-770. PubMed ID: 31624376 [TBL] [Abstract][Full Text] [Related]
6. Role of Cbfb in hematopoiesis and perturbations resulting from expression of the leukemogenic fusion gene Cbfb-MYH11. Kundu M; Chen A; Anderson S; Kirby M; Xu L; Castilla LH; Bodine D; Liu PP Blood; 2002 Oct; 100(7):2449-56. PubMed ID: 12239155 [TBL] [Abstract][Full Text] [Related]
7. Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia. Diffner E; Beck D; Gudgin E; Thoms JA; Knezevic K; Pridans C; Foster S; Goode D; Lim WK; Boelen L; Metzeler KH; Micklem G; Bohlander SK; Buske C; Burnett A; Ottersbach K; Vassiliou GS; Olivier J; Wong JW; Göttgens B; Huntly BJ; Pimanda JE Blood; 2013 Mar; 121(12):2289-300. PubMed ID: 23327922 [TBL] [Abstract][Full Text] [Related]
8. Proleukemic RUNX1 and CBFbeta mutations in the pathogenesis of acute leukemia. Engel ME; Hiebert SW Cancer Treat Res; 2010; 145():127-47. PubMed ID: 20306249 [TBL] [Abstract][Full Text] [Related]
9. Classifying AML patients with inv(16) into high-risk and low-risk relapsed patients based on peritransplantation minimal residual disease determined by CBFβ/MYH11 gene expression. Xiaosu Z; Leqing C; Yazhen Q; Yu W; Xiaohui Z; Lanping X; Xiaojun H; Yingjun C Ann Hematol; 2019 Jan; 98(1):73-81. PubMed ID: 30159599 [TBL] [Abstract][Full Text] [Related]
10. Cbfb/Runx1 repression-independent blockage of differentiation and accumulation of Csf2rb-expressing cells by Cbfb-MYH11. Hyde RK; Kamikubo Y; Anderson S; Kirby M; Alemu L; Zhao L; Liu PP Blood; 2010 Feb; 115(7):1433-43. PubMed ID: 20007544 [TBL] [Abstract][Full Text] [Related]
11. CBFβ-MYH11 interferes with megakaryocyte differentiation via modulating a gene program that includes GATA2 and KLF1. Yi G; Mandoli A; Jussen L; Tijchon E; van Bergen MGJM; Cordonnier G; Hansen M; Kim B; Nguyen LN; Jansen PWTC; Vermeulen M; van der Reijden B; van den Akker E; Bond J; Martens JHA Blood Cancer J; 2019 Mar; 9(3):33. PubMed ID: 30850577 [TBL] [Abstract][Full Text] [Related]
12. Clinical implications of additional chromosomal abnormalities in adult acute myeloid leukemia with inv (16)/t(16;16)/CBFB::MYH11. Gao J; Santana-Santos L; Fu L; Alvey E; Chen Q; Wolniak K; Xia Z; Aqil B; Behdad A; Ji P; Sukhanova M; Abaza Y; Altman JK; Chen YH; Lu X Eur J Haematol; 2024 Jun; 112(6):964-974. PubMed ID: 38388794 [TBL] [Abstract][Full Text] [Related]
13. Targeting binding partners of the CBFβ-SMMHC fusion protein for the treatment of inversion 16 acute myeloid leukemia. Richter L; Wang Y; Hyde RK Oncotarget; 2016 Oct; 7(40):66255-66266. PubMed ID: 27542261 [TBL] [Abstract][Full Text] [Related]
14. Molecular Basis and Targeted Inhibition of CBFβ-SMMHC Acute Myeloid Leukemia. Castilla LH; Bushweller JH Adv Exp Med Biol; 2017; 962():229-244. PubMed ID: 28299661 [TBL] [Abstract][Full Text] [Related]
15. Rare type I CBFβ/MYH11 fusion transcript in primary acute myeloid leukemia with inv(16)(p13.1q22): a case report. Zhang W; Wang H; Zhang P; Li H; Ma X; Liu H Braz J Med Biol Res; 2021; 54(12):e11605. PubMed ID: 34730684 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of transcriptional repression by the t(8;21)-, t(12;21)-, and inv(16)-encoded fusion proteins. Heibert SW; Lutterbach B; Durst K; Wang L; Linggi B; Wu S; Wood L; Amann J; King D; Hou Y Cancer Chemother Pharmacol; 2001 Aug; 48 Suppl 1():S31-4. PubMed ID: 11587363 [TBL] [Abstract][Full Text] [Related]
17. miR-17 deregulates a core RUNX1-miRNA mechanism of CBF acute myeloid leukemia. Fischer J; Rossetti S; Datta A; Eng K; Beghini A; Sacchi N Mol Cancer; 2015 Jan; 14():7. PubMed ID: 25612891 [TBL] [Abstract][Full Text] [Related]
18. The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Durst KL; Lutterbach B; Kummalue T; Friedman AD; Hiebert SW Mol Cell Biol; 2003 Jan; 23(2):607-19. PubMed ID: 12509458 [TBL] [Abstract][Full Text] [Related]