These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 24002637)

  • 1. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents.
    Radhakrishnan K; Bader KB; Haworth KJ; Kopechek JA; Raymond JL; Huang SL; McPherson DD; Holland CK
    Phys Med Biol; 2013 Sep; 58(18):6541-63. PubMed ID: 24002637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of echogenicity and onset of cavitation from echogenic liposomes: pulse repetition frequency independence.
    Radhakrishnan K; Haworth KJ; Peng T; McPherson DD; Holland CK
    Ultrasound Med Biol; 2015 Jan; 41(1):208-21. PubMed ID: 25438849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Destruction thresholds of echogenic liposomes with clinical diagnostic ultrasound.
    Smith DA; Porter TM; Martinez J; Huang S; MacDonald RC; McPherson DD; Holland CK
    Ultrasound Med Biol; 2007 May; 33(5):797-809. PubMed ID: 17412486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.
    Guo X; Li Q; Zhang Z; Zhang D; Tu J
    J Acoust Soc Am; 2013 Aug; 134(2):1622-31. PubMed ID: 23927202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavitation thresholds of contrast agents in an in vitro human clot model exposed to 120-kHz ultrasound.
    Gruber MJ; Bader KB; Holland CK
    J Acoust Soc Am; 2014 Feb; 135(2):646-53. PubMed ID: 25234874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gauging the likelihood of stable cavitation from ultrasound contrast agents.
    Bader KB; Holland CK
    Phys Med Biol; 2013 Jan; 58(1):127-44. PubMed ID: 23221109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of echogenic liposomes as a blood pool ultrasound contrast agent in a physiologic flow phantom.
    Radhakrishnan K; Haworth KJ; Huang SL; Klegerman ME; McPherson DD; Holland CK
    Ultrasound Med Biol; 2012 Nov; 38(11):1970-81. PubMed ID: 22929652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles.
    Tung YS; Choi JJ; Baseri B; Konofagou EE
    Ultrasound Med Biol; 2010 May; 36(5):840-52. PubMed ID: 20420973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.
    Xu S; Hu H; Jiang H; Xu Z; Wan M
    J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of inertial cavitation of Optison in producing sonoporation of chinese hamster ovary cells.
    Forbes MM; Steinberg RL; O'Brien WD
    Ultrasound Med Biol; 2008 Dec; 34(12):2009-18. PubMed ID: 18692296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.
    Haworth KJ; Raymond JL; Radhakrishnan K; Moody MR; Huang SL; Peng T; Shekhar H; Klegerman ME; Kim H; McPherson DD; Holland CK
    Ultrasound Med Biol; 2016 Feb; 42(2):518-27. PubMed ID: 26547633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between maximum radial expansion of ultrasound contrast agents and experimental postexcitation signal results.
    King DA; O'Brien WD
    J Acoust Soc Am; 2011 Jan; 129(1):114-21. PubMed ID: 21302993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes.
    Smith DA; Vaidya SS; Kopechek JA; Huang SL; Klegerman ME; McPherson DD; Holland CK
    Ultrasound Med Biol; 2010 Jan; 36(1):145-57. PubMed ID: 19900755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial cavitation threshold of nested microbubbles.
    Wallace N; Dicker S; Lewin P; Wrenn SP
    Ultrasonics; 2015 Apr; 58():67-74. PubMed ID: 25620709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband attenuation measurements of phospholipid-shelled ultrasound contrast agents.
    Raymond JL; Haworth KJ; Bader KB; Radhakrishnan K; Griffin JK; Huang SL; McPherson DD; Holland CK
    Ultrasound Med Biol; 2014 Feb; 40(2):410-21. PubMed ID: 24262056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions.
    Zhao X; Wright A; Goertz DE
    Ultrason Sonochem; 2023 Feb; 93():106291. PubMed ID: 36640460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals.
    Ammi AY; Cleveland RO; Mamou J; Wang GI; Bridal SL; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):126-36. PubMed ID: 16471439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-dependent evaluation of the role of definity in producing sonoporation of Chinese hamster ovary cells.
    Forbes MM; Steinberg RL; O'Brien WD
    J Ultrasound Med; 2011 Jan; 30(1):61-9. PubMed ID: 21193706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble.
    Kodama T; Tomita Y; Koshiyama K; Blomley MJ
    Ultrasound Med Biol; 2006 Jun; 32(6):905-14. PubMed ID: 16785012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of bubbles on measurement of drug release from echogenic liposomes.
    Kopechek JA; Haworth KJ; Radhakrishnan K; Huang SL; Klegerman ME; McPherson DD; Holland CK
    Ultrason Sonochem; 2013 Jul; 20(4):1121-30. PubMed ID: 23357288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.