BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

780 related articles for article (PubMed ID: 24002695)

  • 21. Study of the performance change in digital mammography systems depending on the total number of examinations.
    Kaya Karaaslan M; Muzoğlu N; Gündoğdu Ö
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36260966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phantom-based analysis of variations in automatic exposure control across three mammography systems: implications for radiation dose and image quality in mammography, DBT, and CEM.
    Gennaro G; Del Genio S; Manco G; Caumo F
    Eur Radiol Exp; 2024 Apr; 8(1):49. PubMed ID: 38622388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dose to population as a metric in the design of optimised exposure control in digital mammography.
    Klausz R; Shramchenko N
    Radiat Prot Dosimetry; 2005; 114(1-3):369-74. PubMed ID: 15933139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformance of mean glandular dose from phantom and patient data in mammography.
    Kelaranta A; Toroi P; Timonen M; Komssi S; Kortesniemi M
    Radiat Prot Dosimetry; 2015 Apr; 164(3):342-53. PubMed ID: 25114321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contrast-detail phantom scoring methodology.
    Thomas JA; Chakrabarti K; Kaczmarek R; Romanyukha A
    Med Phys; 2005 Mar; 32(3):807-14. PubMed ID: 15839353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analytical optimization of digital subtraction mammography with contrast medium using a commercial unit.
    Rosado-Méndez I; Palma BA; Brandan ME
    Med Phys; 2008 Dec; 35(12):5544-57. PubMed ID: 19175112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Experimental investigations for dose reduction by optimizing the radiation quality for digital mammography with an a-Se detector].
    Schulz-Wendtland R; Hermann KP; Wenkel E; Böhner C; Lell M; Dassel MS; Bautz WA
    Rofo; 2007 May; 179(5):487-91. PubMed ID: 17436182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of automatic exposure control options in digital mammography.
    Zhou Y; Scott A; Allahverdian J; Frankel S
    J Xray Sci Technol; 2014; 22(3):377-94. PubMed ID: 24865213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of the exposure parameters in digital mammography for diverse glandularities using the contrast-detail metric.
    Martí Villarreal OA; Velasco FG; Fausto AMF; Milian FM; Mol AW; Capizzi KR; Ambrosio P
    Phys Med; 2022 Sep; 101():112-119. PubMed ID: 35988481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AEC for scanning digital mammography based on variation of scan velocity.
    Aslund M; Cederström B; Lundqvist M; Danielsson M
    Med Phys; 2005 Nov; 32(11):3367-74. PubMed ID: 16370424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of compressed breast thickness and dose on lesion detectability in digital mammography: FROC study with simulated lesions in real mammograms.
    Salvagnini E; Bosmans H; Van Ongeval C; Van Steen A; Michielsen K; Cockmartin L; Struelens L; Marshall NW
    Med Phys; 2016 Sep; 43(9):5104. PubMed ID: 27587041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Objective assessment of image quality in conventional and digital mammography taking into account dynamic range.
    Pachoud M; Lepori D; Valley JF; Verdun FR
    Radiat Prot Dosimetry; 2005; 114(1-3):380-2. PubMed ID: 15933141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of backscatter factors in breast tomosynthesis using MCNPX simulations and measurements.
    Baptista M; Di Maria S; Figueira C; Orvalho L; Vaz P
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):325-30. PubMed ID: 25836681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thickness of molybdenum filter and squared contrast-to-noise ratio per dose for digital mammography.
    Nishino TK; Wu X; Johnson RF
    AJR Am J Roentgenol; 2005 Oct; 185(4):960-3. PubMed ID: 16177415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patient dose in digital mammography.
    Chevalier M; Morán P; Ten JI; Fernández Soto JM; Cepeda T; Vañó E
    Med Phys; 2004 Sep; 31(9):2471-9. PubMed ID: 15487727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of image quality on calcification detection in digital mammography.
    Warren LM; Mackenzie A; Cooke J; Given-Wilson RM; Wallis MG; Chakraborty DP; Dance DR; Bosmans H; Young KC
    Med Phys; 2012 Jun; 39(6):3202-13. PubMed ID: 22755704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using aluminum for scatter control in mammography: preliminary work using measurements of CNR and FOM.
    Al Khalifah K; Davidson R; Zhou A
    Radiol Phys Technol; 2020 Mar; 13(1):37-44. PubMed ID: 31749130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detectability comparison between a high energy x-ray phase sensitive and mammography systems in imaging phantoms with varying glandular-adipose ratios.
    Ghani MU; Wong MD; Wu D; Zheng B; Fajardo LL; Yan A; Fuh J; Wu X; Liu H
    Phys Med Biol; 2017 May; 62(9):3523-3538. PubMed ID: 28379851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Results of an automatic evaluation of test images according to PAS 1054 and IEC 6220-1-2 on different types of digital mammographic units].
    Blendl C; Schreiber AC; Buhr H
    Rofo; 2009 Oct; 181(10):979-88. PubMed ID: 19676013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contrast-to-noise ratio in magnification mammography: a Monte Carlo study.
    Koutalonis M; Delis H; Spyrou G; Costaridou L; Tzanakos G; Panayiotakis G
    Phys Med Biol; 2007 Jun; 52(11):3185-99. PubMed ID: 17505097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.