These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 24002731)

  • 1. Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering.
    Kundu B; Kundu SC
    Biomed Mater; 2013 Oct; 8(5):055003. PubMed ID: 24002731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroporous silk fibroin cryogels.
    Ak F; Oztoprak Z; Karakutuk I; Okay O
    Biomacromolecules; 2013 Mar; 14(3):719-27. PubMed ID: 23360211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-bioengineered silk gland fibroin protein: characterization and evaluation of matrices for potential tissue engineering applications.
    Mandal BB; Kundu SC
    Biotechnol Bioeng; 2008 Aug; 100(6):1237-50. PubMed ID: 18383269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
    Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL
    Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of porous tubular silk fibroin scaffolds.
    Min S; Gao X; Liu L; Tian L; Zhu L; Zhang H; Yao J
    J Biomater Sci Polym Ed; 2009; 20(13):1961-74. PubMed ID: 19793450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.
    Mallepally RR; Marin MA; Surampudi V; Subia B; Rao RR; Kundu SC; McHugh MA
    Biomed Mater; 2015 May; 10(3):035002. PubMed ID: 25953953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-gelled silk fibroin protein scaffolds for potential applications in soft tissue engineering.
    Bhardwaj N; Chakraborty S; Kundu SC
    Int J Biol Macromol; 2011 Oct; 49(3):260-7. PubMed ID: 21557966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts.
    Zhu M; Wang K; Mei J; Li C; Zhang J; Zheng W; An D; Xiao N; Zhao Q; Kong D; Wang L
    Acta Biomater; 2014 May; 10(5):2014-23. PubMed ID: 24486642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs.
    Janani G; Nandi SK; Mandal BB
    Acta Biomater; 2018 Feb; 67():167-182. PubMed ID: 29223705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-bioengineered silk fibroin protein 3D scaffolds for potential biotechnological and tissue engineering applications.
    Mandal BB; Kundu SC
    Macromol Biosci; 2008 Sep; 8(9):807-18. PubMed ID: 18702171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of poly(lactic-co-glycolic acid) scaffolds containing silk fibroin scaffolds for tissue engineering applications.
    Ju HW; Sheikh FA; Moon BM; Park HJ; Lee OJ; Kim JH; Eun JJ; Khang G; Park CH
    J Biomed Mater Res A; 2014 Aug; 102(8):2713-24. PubMed ID: 24026912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of Antheraea assama silk fibroin based novel non-woven scaffold for tissue engineering applications.
    Kasoju N; Bhonde RR; Bora U
    J Tissue Eng Regen Med; 2009 Oct; 3(7):539-52. PubMed ID: 19670334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications.
    Zhang H; Liu X; Yang M; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():8-13. PubMed ID: 26117733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell proliferation and migration in silk fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 May; 30(15):2956-65. PubMed ID: 19249094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction.
    Park HJ; Lee OJ; Lee MC; Moon BM; Ju HW; Lee Jm; Kim JH; Kim DW; Park CH
    Int J Biol Macromol; 2015; 78():215-23. PubMed ID: 25849999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications.
    Kasoju N; Bora U
    Biomed Mater; 2012 Aug; 7(4):045004. PubMed ID: 22556184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New process to form a silk fibroin porous 3-D structure.
    Tamada Y
    Biomacromolecules; 2005; 6(6):3100-6. PubMed ID: 16283733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable hybrid cryogels functionalized with microparticles as supermacroporous multifunctional biomaterial scaffolds.
    Sami H; Kumar A
    J Biomater Sci Polym Ed; 2013; 24(10):1165-84. PubMed ID: 23713421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.