BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 24002775)

  • 1. Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning.
    Marković G; Manojlović V; Ružić J; Sokić M
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength.
    Guo S; Meng Q; Zhao X; Wei Q; Xu H
    Sci Rep; 2015 Oct; 5():14688. PubMed ID: 26434766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Ti-Zr-Hf-Fe Nanostructured Alloy for Biomedical Applications.
    Hynowska A; Blanquer A; Pellicer E; Fornell J; Suriñach S; Baró MD; González S; Ibáñez E; Barrios L; Nogués C; Sort J
    Materials (Basel); 2013 Oct; 6(11):4930-4945. PubMed ID: 28788368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obtaining a Wire of Biocompatible Superelastic Alloy Ti-28Nb-5Zr.
    Nasakina EO; Konushkin SV; Sudarchikova MA; Sergienko KV; Baikin AS; Tsareva AM; Kaplan MA; Kolmakov AG; Sevost'yanov MA
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32397478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Heat Treatment on the Material Property and Cell Viability of Wire Arc Additively Manufactured Ti6Al4 V.
    Paul AR; Singh S; Hirwani J; Yadav S; Dekiwadia C; Mukherjee M; Kalyanasundaram D
    ACS Appl Bio Mater; 2024 May; 7(5):3096-3109. PubMed ID: 38764432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibroblast Cell Responses to Vanadium and Niobium Titanium Alloys: A Biocompatibility Study.
    Ak A
    ACS Omega; 2023 Sep; 8(37):33802-33808. PubMed ID: 37744787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology of Nanostructured Tantalum Oxide Controls Stem Cell Differentiation and Improves Corrosion Behavior.
    Erdogan YK; Uslu E; Aydınol MK; Saglam ASY; Odabas S; Ercan B
    ACS Biomater Sci Eng; 2024 Jan; 10(1):377-390. PubMed ID: 38078685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale mapping of residual stresses in Al 2024 alloys using correlative and multimodal scanning transmission electron microscopy.
    Daoud ME; Taha I; Helal M; Kamoutsi H; Haidemenopoulos GN; Khan KA; Anjum DH
    Heliyon; 2024 May; 10(9):e30280. PubMed ID: 38707422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gallium-Containing Materials and Their Potential within New-Generation Titanium Alloys for Biomedical Applications.
    McHendrie R; Xiao W; Truong VK; Hashemi R
    Biomimetics (Basel); 2023 Nov; 8(8):. PubMed ID: 38132512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review.
    Wang Q; Zhou P; Liu S; Attarilar S; Ma RL; Zhong Y; Wang L
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32604854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased osteoblast function in vitro and in vivo through surface nanostructuring by ultrasonic shot peening.
    Guo Y; Hu B; Tang C; Wu Y; Sun P; Zhang X; Jia Y
    Int J Nanomedicine; 2015; 10():4593-603. PubMed ID: 26229463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The in vitro and in vivo performance of a strontium-containing coating on the low-modulus Ti35Nb2Ta3Zr alloy formed by micro-arc oxidation.
    Liu W; Cheng M; Wahafu T; Zhao Y; Qin H; Wang J; Zhang X; Wang L
    J Mater Sci Mater Med; 2015 Jul; 26(7):203. PubMed ID: 26152510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bone tissue compatibility of a new Ti35Nb2Ta3Zr alloy with a low Young's modulus.
    Guo Y; Chen D; Cheng M; Lu W; Wang L; Zhang X
    Int J Mol Med; 2013 Mar; 31(3):689-97. PubMed ID: 23338484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus.
    Bai Y; Deng Y; Zheng Y; Li Y; Zhang R; Lv Y; Zhao Q; Wei S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():565-576. PubMed ID: 26652409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiality of the "Gum Metal" titanium-based alloy for biomedical applications.
    Gordin DM; Ion R; Vasilescu C; Drob SI; Cimpean A; Gloriant T
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():362-70. PubMed ID: 25280716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of new metallic alloys for biomedical applications.
    Niinomi M; Nakai M; Hieda J
    Acta Biomater; 2012 Nov; 8(11):3888-903. PubMed ID: 22765961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the design of titanium alloys for orthopedic applications.
    Guillemot F
    Expert Rev Med Devices; 2005 Nov; 2(6):741-8. PubMed ID: 16293101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion resistance and in vitro response of a novel Ti35Nb2Ta3Zr alloy with a low Young's modulus.
    Guo Y; Chen D; Lu W; Jia Y; Wang L; Zhang X
    Biomed Mater; 2013 Oct; 8(5):055004. PubMed ID: 24002775
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.