These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24002921)

  • 1. Thermodynamic dissection of large-scale domain motions coupled with ligand binding of enzyme I.
    Yun YJ; Choi BS; Kim EH; Suh JY
    Protein Sci; 2013 Nov; 22(11):1602-11. PubMed ID: 24002921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorimetric and spectroscopic investigation of the interaction between the C-terminal domain of Enzyme I and its ligands.
    Yun YJ; Suh JY
    Protein Sci; 2012 Nov; 21(11):1726-33. PubMed ID: 22936614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminal domain of the enzyme I is a monomeric well-folded protein with a low conformational stability and residual structure in the unfolded state.
    Romero-Beviar M; Martínez-Rodríguez S; Prieto J; Goormaghtigh E; Ariz U; Martínez-Chantar Mde L; Gómez J; Neira JL
    Protein Eng Des Sel; 2010 Sep; 23(9):729-42. PubMed ID: 20630900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of backbone motions in ligand binding to the c-Src SH3 domain.
    Wang C; Pawley NH; Nicholson LK
    J Mol Biol; 2001 Nov; 313(4):873-87. PubMed ID: 11697910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The N-terminal domain of Escherichia coli enzyme I of the phosphoenolpyruvate/glycose phosphotransferase system: molecular cloning and characterization.
    Chauvin F; Fomenkov A; Johnson CR; Roseman S
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):7028-31. PubMed ID: 8692938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational stability changes of the amino terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system produced by substituting alanine or glutamate for the active-site histidine 189: implications for phosphorylation effects.
    Ginsburg A; Szczepanowski RH; Ruvinov SB; Nosworthy NJ; Sondej M; Umland TC; Peterkofsky A
    Protein Sci; 2000 Jun; 9(6):1085-94. PubMed ID: 10892802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of phosphorylated enzyme I, the phosphoenolpyruvate:sugar phosphotransferase system sugar translocation signal protein.
    Teplyakov A; Lim K; Zhu PP; Kapadia G; Chen CC; Schwartz J; Howard A; Reddy PT; Peterkofsky A; Herzberg O
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16218-23. PubMed ID: 17053069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic equilibrium between closed and partially closed states of the bacterial Enzyme I unveiled by solution NMR and X-ray scattering.
    Venditti V; Schwieters CD; Grishaev A; Clore GM
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11565-70. PubMed ID: 26305976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding funnels and conformational transitions via hinge-bending motions.
    Kumar S; Ma B; Tsai CJ; Wolfson H; Nussinov R
    Cell Biochem Biophys; 1999; 31(2):141-64. PubMed ID: 10593256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interdomain interaction and substrate coupling effects on dimerization and conformational stability of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system.
    Dimitrova MN; Szczepanowski RH; Ruvinov SB; Peterkofsky A; Ginsburg A
    Biochemistry; 2002 Jan; 41(3):906-13. PubMed ID: 11790113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational dynamics and the energetics of protein--ligand interactions: role of interdomain loop in human cytochrome P450 reductase.
    Grunau A; Geraki K; Grossmann JG; Gutierrez A
    Biochemistry; 2007 Jul; 46(28):8244-55. PubMed ID: 17580970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conformational stability of the Streptomyces coelicolor histidine-phosphocarrier protein. Characterization of cold denaturation and urea-protein interactions.
    Neira JL; Gómez J
    Eur J Biochem; 2004 Jun; 271(11):2165-81. PubMed ID: 15153107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability domains, substrate-induced conformational changes, and hinge-bending motions in a psychrophilic phosphoglycerate kinase. A microcalorimetric study.
    Zecchinon L; Oriol A; Netzel U; Svennberg J; Gerardin-Otthiers N; Feller G
    J Biol Chem; 2005 Dec; 280(50):41307-14. PubMed ID: 16227206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution studies using the helical and carboxy-terminal domains of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system.
    Zhu PP; Szczepanowski RH; Nosworthy NJ; Ginsburg A; Peterkofsky A
    Biochemistry; 1999 Nov; 38(47):15470-9. PubMed ID: 10569929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposing effects of phosphoenolpyruvate and pyruvate with Mg(2+) on the conformational stability and dimerization of phosphotransferase enzyme I from Escherichia coli.
    Dimitrova MN; Peterkofsky A; Ginsburg A
    Protein Sci; 2003 Sep; 12(9):2047-56. PubMed ID: 12931002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The monomer/dimer transition of enzyme I of the Escherichia coli phosphotransferase system.
    Patel HV; Vyas KA; Savtchenko R; Roseman S
    J Biol Chem; 2006 Jun; 281(26):17570-8. PubMed ID: 16547355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A previously unobserved conformation for the human Pex5p receptor suggests roles for intrinsic flexibility and rigid domain motions in ligand binding.
    Stanley WA; Pursiainen NV; Garman EF; Juffer AH; Wilmanns M; Kursula P
    BMC Struct Biol; 2007 Apr; 7():24. PubMed ID: 17428317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate binding modifies the hinge bending characteristics of human 3-phosphoglycerate kinase: a molecular dynamics study.
    Palmai Z; Chaloin L; Lionne C; Fidy J; Perahia D; Balog E
    Proteins; 2009 Nov; 77(2):319-29. PubMed ID: 19422062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of enzyme I of the phosphoenolpyruvate sugar phosphotransferase system in the dephosphorylated state.
    Oberholzer AE; Schneider P; Siebold C; Baumann U; Erni B
    J Biol Chem; 2009 Nov; 284(48):33169-76. PubMed ID: 19801641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability and binding of the phosphorylated species of the N-terminal domain of enzyme I and the histidine phosphocarrier protein from the Streptomyces coelicolor phosphoenolpyruvate:sugar phosphotransferase system.
    Doménech R; Martínez-Gómez AI; Aguado-Llera D; Martínez-Rodríguez S; Clemente-Jiménez JM; Velázquez-Campoy A; Neira JL
    Arch Biochem Biophys; 2012 Oct; 526(1):44-53. PubMed ID: 22809892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.