These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24003126)

  • 1. Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization.
    Brackley CA; Taylor S; Papantonis A; Cook PR; Marenduzzo D
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):E3605-11. PubMed ID: 24003126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains.
    Brackley CA; Johnson J; Kelly S; Cook PR; Marenduzzo D
    Nucleic Acids Res; 2016 May; 44(8):3503-12. PubMed ID: 27060145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction.
    Johnson J; Brackley CA; Cook PR; Marenduzzo D
    J Phys Condens Matter; 2015 Feb; 27(6):064119. PubMed ID: 25563801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation.
    Dame RT; Noom MC; Wuite GJ
    Nature; 2006 Nov; 444(7117):387-90. PubMed ID: 17108966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Condensin II Counteracts Cohesin and RNA Polymerase II in the Establishment of 3D Chromatin Organization.
    Rowley MJ; Lyu X; Rana V; Ando-Kuri M; Karns R; Bosco G; Corces VG
    Cell Rep; 2019 Mar; 26(11):2890-2903.e3. PubMed ID: 30865881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties.
    He Y; Lawrimore J; Cook D; Van Gorder EE; De Larimat SC; Adalsteinsson D; Forest MG; Bloom K
    Nucleic Acids Res; 2020 Nov; 48(20):11284-11303. PubMed ID: 33080019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative.
    Adams CC; Workman JL
    Mol Cell Biol; 1995 Mar; 15(3):1405-21. PubMed ID: 7862134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating topological domains in human chromosomes with a fitting-free model.
    Brackley CA; Michieletto D; Mouvet F; Johnson J; Kelly S; Cook PR; Marenduzzo D
    Nucleus; 2016 Sep; 7(5):453-461. PubMed ID: 27841970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale modeling of nucleosome dynamics.
    Sharma S; Ding F; Dokholyan NV
    Biophys J; 2007 Mar; 92(5):1457-70. PubMed ID: 17142268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SMC complexes differentially compact mitotic chromosomes according to genomic context.
    Schalbetter SA; Goloborodko A; Fudenberg G; Belton JM; Miles C; Yu M; Dekker J; Mirny L; Baxter J
    Nat Cell Biol; 2017 Sep; 19(9):1071-1080. PubMed ID: 28825700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-mediated molecular bridging: a key mechanism in biopolymer organization.
    Wiggins PA; Dame RT; Noom MC; Wuite GJ
    Biophys J; 2009 Oct; 97(7):1997-2003. PubMed ID: 19804731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of H-NS mediated compaction of bacterial DNA.
    Joyeux M; Vreede J
    Biophys J; 2013 Apr; 104(7):1615-22. PubMed ID: 23561538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA.
    Kong M; Cutts EE; Pan D; Beuron F; Kaliyappan T; Xue C; Morris EP; Musacchio A; Vannini A; Greene EC
    Mol Cell; 2020 Jul; 79(1):99-114.e9. PubMed ID: 32445620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA polymerase-DNA interaction: structures of intermediate, open, and elongation complexes.
    Ebright RH
    Cold Spring Harb Symp Quant Biol; 1998; 63():11-20. PubMed ID: 10384266
    [No Abstract]   [Full Text] [Related]  

  • 16. Condensins and cohesins - one of these things is not like the other!
    Skibbens RV
    J Cell Sci; 2019 Feb; 132(3):. PubMed ID: 30733374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ephemeral Protein Binding to DNA Shapes Stable Nuclear Bodies and Chromatin Domains.
    Brackley CA; Liebchen B; Michieletto D; Mouvet F; Cook PR; Marenduzzo D
    Biophys J; 2017 Mar; 112(6):1085-1093. PubMed ID: 28355537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling.
    Tark-Dame M; Jerabek H; Manders EM; van der Wateren IM; Heermann DW; van Driel R
    PLoS Comput Biol; 2014 Oct; 10(10):e1003877. PubMed ID: 25299688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Condensin II Regulates Interphase Chromatin Organization Through the Mrg-Binding Motif of Cap-H2.
    Wallace HA; Klebba JE; Kusch T; Rogers GC; Bosco G
    G3 (Bethesda); 2015 Mar; 5(5):803-17. PubMed ID: 25758823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective.
    Luijsterburg MS; Noom MC; Wuite GJ; Dame RT
    J Struct Biol; 2006 Nov; 156(2):262-72. PubMed ID: 16879983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.