These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 240032)

  • 1. Calcium ion-dependent phosphorylation of human erythrocyte membranes.
    Rega AF; Garrahan PJ
    J Membr Biol; 1975 Jul; 22(3-4):313-27. PubMed ID: 240032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on an activator of the (Ca2+ plus Mg2+)-ATPase of human erythrocyte membranes.
    Luthra MG; Hildenbrandt GR; Hanahan DJ
    Biochim Biophys Acta; 1976 Jan; 419(1):164-79. PubMed ID: 1098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J; Hasselbach W
    Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+,Mg2+-ATPase of microsomal membranes from bovine aortic smooth muscle. Identification and characterization of an acid-stable phosphorylated intermediate of the Ca2+,Mg2+-ATPase.
    Sumida M; Okuda H; Hamada M
    J Biochem; 1984 Nov; 96(5):1365-74. PubMed ID: 6151948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca-2+-stimulated membrane phosphorylation and ATPase activity of the human erythrocyte.
    Katz S; Blostein R
    Biochim Biophys Acta; 1975 May; 389(2):314-24. PubMed ID: 124591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of a phosphopeptide intermediate in the Mg ++ -dependent, Na + - and K + -stimulated adenosine triphosphatase reaction of the erythrocyte membrane.
    Avruch J; Fairbanks G
    Proc Natl Acad Sci U S A; 1972 May; 69(5):1216-20. PubMed ID: 4260901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the phosphorylated intermediate of the isolated high-affinity (Ca2+ + Mg2+)-ATPase of human erythrocyte membranes.
    Lichtner R; Wolf HU
    Biochim Biophys Acta; 1980 Jun; 598(3):486-93. PubMed ID: 6104511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of (Mg2 + Ca2+)-ATPase of erythrocyte membranes prepared by different procedures: influence of Mg2+, Ca2+, ATP, and protein activator.
    Katz S; Roufogalis BD; Landman AD; Ho L
    J Supramol Struct; 1979; 10(2):215-25. PubMed ID: 156819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+ activation of membrane-bound (Ca2++Mg2+)-dependent ATPase from human erythrocytes prepared in the presence or absence of Ca2+.
    Scharff O
    Biochim Biophys Acta; 1976 Aug; 443(2):206-18. PubMed ID: 133727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of proteins in rat ovarian plasma membranes by [gamma-32P]GTP: evidence for the formation of a high energy phosphoprotein.
    Amir-Zaltsman Y; Salomon Y
    Mol Cell Endocrinol; 1989 May; 63(1-2):175-87. PubMed ID: 2753226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis.
    Blostein R
    J Biol Chem; 1968 Apr; 243(8):1957-65. PubMed ID: 4230833
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on the phosphorylated intermediates of a K+-stimulated ATPase from rabbit gastric mucosa.
    Ray TK; Forte JG
    Biochim Biophys Acta; 1976 Sep; 443(3):451-67. PubMed ID: 9143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reaction of Mg2+ with the Ca2+-ATPase from human red cell membranes and its modification by Ca2+.
    Caride AJ; Rega AF; Garrahan PJ
    Biochim Biophys Acta; 1986 Dec; 863(2):165-77. PubMed ID: 2947627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of magnesium ions with the calcium pump of sarcoplasmic reticulum.
    Garrahan PJ; Rega AF; Alonso GL
    Biochim Biophys Acta; 1976 Sep; 448(1):121-32. PubMed ID: 9151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+.
    Wu D; Boyer PD
    Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [ATPase activity of human erythrocyte membranes: variations of the Vm and Km parameters in relation to magnesium and calcium ions].
    Jallet P; Laget P; Guerin H; Pieri J
    Biochimie; 1971; 53(5):615-23. PubMed ID: 4256501
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy-dependent endocytosis in erythrocyte ghosts. IV. Effects of Ca2+, Na+ +K+, and 5'-adenylylimidodiphosphate.
    Hayashi H; Plishker GA; Vaughan L; Penniston JT
    Biochim Biophys Acta; 1975 Mar; 382(2):218-29. PubMed ID: 123470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of partial reactions of the Ca2+-ATPase from human red cells by Mg2+ and ATP.
    Garrahan PJ; Rega AF
    Biochim Biophys Acta; 1978 Oct; 513(1):59-65. PubMed ID: 152645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of calmodulin on the phosphoprotein intermediate of Mg2+-dependent Ca2+-stimulated adenosine triphosphatase in human erythrocyte membranes.
    Jeffery DA; Roufogalis BD; Katz S
    Biochem J; 1981 Feb; 194(2):481-6. PubMed ID: 6458281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium ion-dependent p-nitrophenyl phosphate phosphatase activity and calcium ion-dependent adenosine triphosphatase activity from human erythrocyte membranes.
    Rega AF; Richards DE; Garrahan PJ
    Biochem J; 1973 Sep; 136(1):185-94. PubMed ID: 4272534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.