These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 24004288)

  • 41. Inherently chiral uranyl-salophen macrocycles: computer-aided design and resolution.
    Dalla Cort A; Mandolini L; Pasquini C; Schiaffino L
    J Org Chem; 2005 Nov; 70(24):9814-21. PubMed ID: 16292810
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tagged fragment method for evolutionary structure-based de novo lead generation and optimization.
    Liu Q; Masek B; Smith K; Smith J
    J Med Chem; 2007 Nov; 50(22):5392-402. PubMed ID: 17918924
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinase inhibitor data modeling and de novo inhibitor design with fragment approaches.
    Vieth M; Erickson J; Wang J; Webster Y; Mader M; Higgs R; Watson I
    J Med Chem; 2009 Oct; 52(20):6456-66. PubMed ID: 19791746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural and Computational Characterization of a Bridging Zwitterionic-Amidoxime Uranyl Complex.
    Decato DA; Berryman OB
    Org Chem Front; 2019 Apr; 6(7):1038-1043. PubMed ID: 31086674
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of linker geometry on uranyl complexation by rigidly linked bis(3-hydroxy-N-methyl-pyridin-2-one).
    Szigethy G; Raymond KN
    Inorg Chem; 2010 Jul; 49(14):6755-65. PubMed ID: 20575583
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New methodology for profiling combinatorial libraries and screening sets: cleaning up the design process with HARPick.
    Good AC; Lewis RA
    J Med Chem; 1997 Nov; 40(24):3926-36. PubMed ID: 9397173
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flux (2): comparison of molecular mutation and crossover operators for ligand-based de novo design.
    Fechner U; Schneider G
    J Chem Inf Model; 2007; 47(2):656-67. PubMed ID: 17315990
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
    Hartenfeller M; Proschak E; Schüller A; Schneider G
    Chem Biol Drug Des; 2008 Jul; 72(1):16-26. PubMed ID: 18564216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automatic tailoring and transplanting: a practical method that makes virtual screening more useful.
    Li Y; Zhao Y; Liu Z; Wang R
    J Chem Inf Model; 2011 Jun; 51(6):1474-91. PubMed ID: 21520918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unlocking the computational design of metal-organic cages.
    Tarzia A; Jelfs KE
    Chem Commun (Camb); 2022 Mar; 58(23):3717-3730. PubMed ID: 35229861
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrahigh Affinity and Selectivity Nanotraps for Uranium Extraction from Seawater.
    Wang CZ; Chai ZF; Shi WQ
    ACS Cent Sci; 2021 Oct; 7(10):1602-1604. PubMed ID: 34729402
    [No Abstract]   [Full Text] [Related]  

  • 52. Structural Analysis of the Complexation of Uranyl, Neptunyl, Plutonyl, and Americyl with Cyclic Imide Dioximes.
    Penchoff DA; Peterson CC; Camden JP; Bradshaw JA; Auxier JD; Schweitzer GK; Jenkins DM; Harrison RJ; Hall HL
    ACS Omega; 2018 Oct; 3(10):13984-13993. PubMed ID: 31458094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste.
    Sun Q; Aguila B; Perman J; Ivanov AS; Bryantsev VS; Earl LD; Abney CW; Wojtas L; Ma S
    Nat Commun; 2018 Apr; 9(1):1644. PubMed ID: 29691403
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new VGLUT-specific potent inhibitor: pharmacophore of Brilliant Yellow.
    Tamura Y; Ogita K; Ueda T
    Neurochem Res; 2014 Jan; 39(1):117-28. PubMed ID: 24248859
    [TBL] [Abstract][Full Text] [Related]  

  • 55. De novo structure-based design of bisurea hosts for tetrahedral oxoanion guests.
    Bryantsev VS; Hay BP
    J Am Chem Soc; 2006 Feb; 128(6):2035-42. PubMed ID: 16464105
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Search for improved host architectures: application of de novo structure-based design and high-throughput screening methods to identify optimal building blocks for multidentate ethers.
    Hay BP; Oliferenko AA; Uddin J; Zhang C; Firman TK
    J Am Chem Soc; 2005 Dec; 127(48):17043-53. PubMed ID: 16316251
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants.
    McCann BW; Silva ND; Windus TL; Gordon MS; Moyer BA; Bryantsev VS; Hay BP
    Inorg Chem; 2016 Jun; 55(12):5787-803. PubMed ID: 26883005
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent developments in de novo design and scaffold hopping.
    Mauser H; Guba W
    Curr Opin Drug Discov Devel; 2008 May; 11(3):365-74. PubMed ID: 18428090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. De novo structure-based design of bis-amidoxime uranophiles.
    Vukovic S; Hay BP
    Inorg Chem; 2013 Jul; 52(13):7805-10. PubMed ID: 24004288
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.