These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 24004342)
1. In situ cross-linkable hydrogel of hyaluronan produced via copper-free click chemistry. Takahashi A; Suzuki Y; Suhara T; Omichi K; Shimizu A; Hasegawa K; Kokudo N; Ohta S; Ito T Biomacromolecules; 2013 Oct; 14(10):3581-8. PubMed ID: 24004342 [TBL] [Abstract][Full Text] [Related]
2. Injectable hyaluronic acid/poly(ethylene glycol) hydrogels crosslinked via strain-promoted azide-alkyne cycloaddition click reaction. Fu S; Dong H; Deng X; Zhuo R; Zhong Z Carbohydr Polym; 2017 Aug; 169():332-340. PubMed ID: 28504153 [TBL] [Abstract][Full Text] [Related]
3. An injectable and fast-degradable poly(ethylene glycol) hydrogel fabricated via bioorthogonal strain-promoted azide-alkyne cycloaddition click chemistry. Jiang H; Qin S; Dong H; Lei Q; Su X; Zhuo R; Zhong Z Soft Matter; 2015 Aug; 11(30):6029-36. PubMed ID: 26132425 [TBL] [Abstract][Full Text] [Related]
4. Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation. Oh EJ; Kang SW; Kim BS; Jiang G; Cho IH; Hahn SK J Biomed Mater Res A; 2008 Sep; 86(3):685-93. PubMed ID: 18022803 [TBL] [Abstract][Full Text] [Related]
5. Improved synthesis of hyaluronic acid hydrogel and its effect on tissue augmentation. Yan XM; Seo MS; Hwang EJ; Cho IH; Hahn SK; Sohn UD J Biomater Appl; 2012 Aug; 27(2):179-86. PubMed ID: 21527495 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Li L; Wang N; Jin X; Deng R; Nie S; Sun L; Wu Q; Wei Y; Gong C Biomaterials; 2014 Apr; 35(12):3903-17. PubMed ID: 24507411 [TBL] [Abstract][Full Text] [Related]
7. In situ cross-linkable high molecular weight hyaluronan-bisphosphonate conjugate for localized delivery and cell-specific targeting: a hydrogel linked prodrug approach. Varghese OP; Sun W; Hilborn J; Ossipov DA J Am Chem Soc; 2009 Jul; 131(25):8781-3. PubMed ID: 19499915 [TBL] [Abstract][Full Text] [Related]
8. Biological characterization of oxidized hyaluronic acid/resveratrol hydrogel for cartilage tissue engineering. Sheu SY; Chen WS; Sun JS; Lin FH; Wu T J Biomed Mater Res A; 2013 Dec; 101(12):3457-66. PubMed ID: 23595953 [TBL] [Abstract][Full Text] [Related]
9. Hyaluronic acid hydrogel scaffolds with a triple degradation behavior for bone tissue engineering. Cui N; Qian J; Liu T; Zhao N; Wang H Carbohydr Polym; 2015 Aug; 126():192-8. PubMed ID: 25933539 [TBL] [Abstract][Full Text] [Related]
10. Enzymatically cross-linked hyaluronic acid/graphene oxide nanocomposite hydrogel with pH-responsive release. Song F; Hu W; Xiao L; Cao Z; Li X; Zhang C; Liao L; Liu L J Biomater Sci Polym Ed; 2015; 26(6):339-52. PubMed ID: 25598448 [TBL] [Abstract][Full Text] [Related]
11. Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Ji Y; Ghosh K; Li B; Sokolov JC; Clark RA; Rafailovich MH Macromol Biosci; 2006 Oct; 6(10):811-7. PubMed ID: 17022092 [TBL] [Abstract][Full Text] [Related]
12. Functionalization of hyaluronic acid with chemoselective groups via a disulfide-based protection strategy for in situ formation of mechanically stable hydrogels. Ossipov DA; Piskounova S; Varghese OP; Hilborn J Biomacromolecules; 2010 Sep; 11(9):2247-54. PubMed ID: 20704177 [TBL] [Abstract][Full Text] [Related]
13. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Shu XZ; Liu Y; Palumbo F; Prestwich GD Biomaterials; 2003 Sep; 24(21):3825-34. PubMed ID: 12818555 [TBL] [Abstract][Full Text] [Related]
14. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Fan M; Ma Y; Mao J; Zhang Z; Tan H Acta Biomater; 2015 Jul; 20():60-68. PubMed ID: 25839124 [TBL] [Abstract][Full Text] [Related]
15. Enzymatic degradation of hyaluronan hydrogels with different capacity for in situ bio-mineralization. Shi L; Zhang Y; Ossipov D Biopolymers; 2018 Feb; 109(2):. PubMed ID: 29178472 [TBL] [Abstract][Full Text] [Related]
16. Injectable hybrid hydrogels of hyaluronic Acid crosslinked by well-defined synthetic polycations: preparation and characterization in vitro and in vivo. Cross D; Jiang X; Ji W; Han W; Wang C Macromol Biosci; 2015 May; 15(5):668-81. PubMed ID: 25630277 [TBL] [Abstract][Full Text] [Related]
17. Reductive alkylation of hyaluronic acid for the synthesis of biocompatible hydrogels by click chemistry. Huerta-Angeles G; Němcová M; Příkopová E; Šmejkalová D; Pravda M; Kučera L; Velebný V Carbohydr Polym; 2012 Nov; 90(4):1704-11. PubMed ID: 22944436 [TBL] [Abstract][Full Text] [Related]
18. Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. Yeo Y; Adil M; Bellas E; Astashkina A; Chaudhary N; Kohane DS J Control Release; 2007 Jul; 120(3):178-85. PubMed ID: 17582645 [TBL] [Abstract][Full Text] [Related]
19. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration. Su WY; Chen YC; Lin FH Acta Biomater; 2010 Aug; 6(8):3044-55. PubMed ID: 20193782 [TBL] [Abstract][Full Text] [Related]
20. The mechanics of hyaluronic acid/adipic acid dihydrazide hydrogel: towards developing a vessel for delivery of preadipocytes to native tissues. Shoham N; Sasson AL; Lin FH; Benayahu D; Haj-Ali R; Gefen A J Mech Behav Biomed Mater; 2013 Dec; 28():320-31. PubMed ID: 24021174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]