BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24004447)

  • 1. Acclimation to low light by C4 maize: implications for bundle sheath leakiness.
    Bellasio C; Griffiths H
    Plant Cell Environ; 2014 May; 37(5):1046-58. PubMed ID: 24004447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy.
    Bellasio C; Griffiths H
    J Exp Bot; 2014 Jul; 65(13):3725-36. PubMed ID: 24591058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation.
    Kromdijk J; Ubierna N; Cousins AB; Griffiths H
    J Exp Bot; 2014 Jul; 65(13):3443-57. PubMed ID: 24755278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can the progressive increase of C₄ bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration?
    Kromdijk J; Griffiths H; Schepers HE
    Plant Cell Environ; 2010 Nov; 33(11):1935-48. PubMed ID: 20561250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The efficiency of C4 photosynthesis under low light conditions in Zea mays, Miscanthus x giganteus and Flaveria bidentis.
    Ubierna N; Sun W; Kramer DM; Cousins AB
    Plant Cell Environ; 2013 Feb; 36(2):365-81. PubMed ID: 22812384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between quantum yield for CO2 assimilation, activity of key enzymes and CO2 leakiness in Amaranthus cruentus, a C4 dicot, grown in high or low light.
    Tazoe Y; Hanba YT; Furumoto T; Noguchi K; Terashima I
    Plant Cell Physiol; 2008 Jan; 49(1):19-29. PubMed ID: 18032398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic flexibility in maize exposed to salinity and shade.
    Sharwood RE; Sonawane BV; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3715-24. PubMed ID: 24692650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold acclimation of mesophyll conductance, bundle-sheath conductance and leakiness in Miscanthus × giganteus.
    Serrano-Romero EA; Cousins AB
    New Phytol; 2020 Jun; 226(6):1594-1606. PubMed ID: 32112409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stopping the leaks: new insights into C4 photosynthesis at low light.
    Sage RF
    Plant Cell Environ; 2014 May; 37(5):1037-41. PubMed ID: 24818232
    [No Abstract]   [Full Text] [Related]  

  • 10. The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus×giganteus: changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism.
    Sun W; Ubierna N; Ma JY; Cousins AB
    Plant Cell Environ; 2012 May; 35(5):982-93. PubMed ID: 22082455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using a biochemical C4 photosynthesis model and combined gas exchange and chlorophyll fluorescence measurements to estimate bundle-sheath conductance of maize leaves differing in age and nitrogen content.
    Yin X; Sun Z; Struik PC; Van der Putten PE; Van Ieperen W; Harbinson J
    Plant Cell Environ; 2011 Dec; 34(12):2183-99. PubMed ID: 21883288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The coordination of C4 photosynthesis and the CO2-concentrating mechanism in maize and Miscanthus x giganteus in response to transient changes in light quality.
    Sun W; Ubierna N; Ma JY; Walker BJ; Kramer DM; Cousins AB
    Plant Physiol; 2014 Mar; 164(3):1283-92. PubMed ID: 24488966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upregulation of bundle sheath electron transport capacity under limiting light in C
    Ermakova M; Bellasio C; Fitzpatrick D; Furbank RT; Mamedov F; von Caemmerer S
    Plant J; 2021 Jun; 106(5):1443-1454. PubMed ID: 33772896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The efficiency of C(4) photosynthesis under low light conditions: assumptions and calculations with CO(2) isotope discrimination.
    Ubierna N; Sun W; Cousins AB
    J Exp Bot; 2011 May; 62(9):3119-34. PubMed ID: 21527629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is C4 photosynthesis less phenotypically plastic than C3 photosynthesis?
    Sage RF; McKown AD
    J Exp Bot; 2006; 57(2):303-17. PubMed ID: 16364950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The operation of two decarboxylases, transamination, and partitioning of C4 metabolic processes between mesophyll and bundle sheath cells allows light capture to be balanced for the maize C4 pathway.
    Bellasio C; Griffiths H
    Plant Physiol; 2014 Jan; 164(1):466-80. PubMed ID: 24254314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of bundle sheath size boosts cyclic electron flow in C
    Bellasio C; Ermakova M
    Plant J; 2022 Sep; 111(5):1223-1237. PubMed ID: 35866447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C4 Photosynthesis (The CO2-Concentrating Mechanism and Photorespiration).
    Dai Z; Ku M; Edwards GE
    Plant Physiol; 1993 Sep; 103(1):83-90. PubMed ID: 12231916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry.
    Pengelly JJ; Sirault XR; Tazoe Y; Evans JR; Furbank RT; von Caemmerer S
    J Exp Bot; 2010 Sep; 61(14):4109-22. PubMed ID: 20693408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photorespiratory compensation: a driver for biological diversity.
    Sage RF
    Plant Biol (Stuttg); 2013 Jul; 15(4):624-38. PubMed ID: 23656429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.