These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 24004455)
1. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations. Guadalupe-Medina V; Metz B; Oud B; van Der Graaf CM; Mans R; Pronk JT; van Maris AJ Microb Biotechnol; 2014 Jan; 7(1):44-53. PubMed ID: 24004455 [TBL] [Abstract][Full Text] [Related]
3. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031 [TBL] [Abstract][Full Text] [Related]
4. Co-cultivation of Saccharomyces cerevisiae strains combines advantages of different metabolic engineering strategies for improved ethanol yield. van Aalst ACA; van der Meulen IS; Jansen MLA; Mans R; Pronk JT Metab Eng; 2023 Nov; 80():151-162. PubMed ID: 37751790 [TBL] [Abstract][Full Text] [Related]
5. Optimizing the balance between heterologous acetate- and CO2-reduction pathways in anaerobic cultures of Saccharomyces cerevisiae strains engineered for low-glycerol production. van Aalst ACA; Geraats EH; Jansen MLA; Mans R; Pronk JT FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37942589 [TBL] [Abstract][Full Text] [Related]
6. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055 [TBL] [Abstract][Full Text] [Related]
7. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. Henningsen BM; Hon S; Covalla SF; Sonu C; Argyros DA; Barrett TF; Wiswall E; Froehlich AC; Zelle RM Appl Environ Microbiol; 2015 Dec; 81(23):8108-17. PubMed ID: 26386051 [TBL] [Abstract][Full Text] [Related]
8. Optimizing anaerobic growth rate and fermentation kinetics in Papapetridis I; Goudriaan M; Vázquez Vitali M; de Keijzer NA; van den Broek M; van Maris AJA; Pronk JT Biotechnol Biofuels; 2018; 11():17. PubMed ID: 29416562 [TBL] [Abstract][Full Text] [Related]
9. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae. Pagliardini J; Hubmann G; Alfenore S; Nevoigt E; Bideaux C; Guillouet SE Microb Cell Fact; 2013 Mar; 12():29. PubMed ID: 23537043 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae. Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870 [TBL] [Abstract][Full Text] [Related]
11. Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae. Zhang L; Tang Y; Guo ZP; Ding ZY; Shi GY Biotechnol Lett; 2011 Jul; 33(7):1375-80. PubMed ID: 21400237 [TBL] [Abstract][Full Text] [Related]
12. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. Ansell R; Granath K; Hohmann S; Thevelein JM; Adler L EMBO J; 1997 May; 16(9):2179-87. PubMed ID: 9171333 [TBL] [Abstract][Full Text] [Related]
13. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Björkqvist S; Ansell R; Adler L; Lidén G Appl Environ Microbiol; 1997 Jan; 63(1):128-32. PubMed ID: 8979347 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in S Papapetridis I; van Dijk M; van Maris AJA; Pronk JT Biotechnol Biofuels; 2017; 10():107. PubMed ID: 28450888 [TBL] [Abstract][Full Text] [Related]
15. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Valadi H; Larsson C; Gustafsson L Appl Microbiol Biotechnol; 1998 Oct; 50(4):434-9. PubMed ID: 9830094 [TBL] [Abstract][Full Text] [Related]
16. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast. Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865 [TBL] [Abstract][Full Text] [Related]
17. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Ida Y; Hirasawa T; Furusawa C; Shimizu H Appl Microbiol Biotechnol; 2013 Jun; 97(11):4811-9. PubMed ID: 23435983 [TBL] [Abstract][Full Text] [Related]
18. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production. Zhang L; Tang Y; Guo Z; Shi G J Ind Microbiol Biotechnol; 2013 Oct; 40(10):1153-60. PubMed ID: 23896974 [TBL] [Abstract][Full Text] [Related]
19. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Modig T; Granath K; Adler L; Lidén G Appl Microbiol Biotechnol; 2007 May; 75(2):289-96. PubMed ID: 17221190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]