These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 24004511)
1. Improved operator agreement and efficiency using the minimum area contour change method for delineation of hyperintense multiple sclerosis lesions on FLAIR MRI. Wack DS; Dwyer MG; Bergsland N; Ramasamy D; Di Perri C; Ranza L; Hussein S; Magnano C; Seals K; Zivadinov R BMC Med Imaging; 2013 Sep; 13():29. PubMed ID: 24004511 [TBL] [Abstract][Full Text] [Related]
2. Improved assessment of multiple sclerosis lesion segmentation agreement via detection and outline error estimates. Wack DS; Dwyer MG; Bergsland N; Di Perri C; Ranza L; Hussein S; Ramasamy D; Poloni G; Zivadinov R BMC Med Imaging; 2012 Jul; 12():17. PubMed ID: 22812697 [TBL] [Abstract][Full Text] [Related]
3. Bayesian classification of multiple sclerosis lesions in longitudinal MRI using subtraction images. Elliott C; Francis SJ; Arnold DL; Collins DL; Arbel T Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):290-7. PubMed ID: 20879327 [TBL] [Abstract][Full Text] [Related]
4. Automated identification of brain new lesions in multiple sclerosis using subtraction images. Battaglini M; Rossi F; Grove RA; Stromillo ML; Whitcher B; Matthews PM; De Stefano N J Magn Reson Imaging; 2014 Jun; 39(6):1543-9. PubMed ID: 24987754 [TBL] [Abstract][Full Text] [Related]
5. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. Mulder ER; de Jong RA; Knol DL; van Schijndel RA; Cover KS; Visser PJ; Barkhof F; Vrenken H; Neuroimage; 2014 May; 92():169-81. PubMed ID: 24521851 [TBL] [Abstract][Full Text] [Related]
6. Improved identification of intracortical lesions in multiple sclerosis with phase-sensitive inversion recovery in combination with fast double inversion recovery MR imaging. Nelson F; Poonawalla AH; Hou P; Huang F; Wolinsky JS; Narayana PA AJNR Am J Neuroradiol; 2007 Oct; 28(9):1645-9. PubMed ID: 17885241 [TBL] [Abstract][Full Text] [Related]
7. A toolbox for multiple sclerosis lesion segmentation. Roura E; Oliver A; Cabezas M; Valverde S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Lladó X Neuroradiology; 2015 Oct; 57(10):1031-43. PubMed ID: 26227167 [TBL] [Abstract][Full Text] [Related]
8. A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images. Khayati R; Vafadust M; Towhidkhah F; Nabavi SM Comput Med Imaging Graph; 2008 Mar; 32(2):124-33. PubMed ID: 18055174 [TBL] [Abstract][Full Text] [Related]
9. Fuzzy approach toward reducing false positives in the detection of small multiple sclerosis lesions in magnetic resonance images. Aymerich FX; Sobrevilla P; Montseny E; Rovira A Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5694-7. PubMed ID: 22255632 [TBL] [Abstract][Full Text] [Related]
10. Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts. García-Lorenzo D; Lecoeur J; Arnold DL; Collins DL; Barillot C Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):584-91. PubMed ID: 20426159 [TBL] [Abstract][Full Text] [Related]
11. FLAIR lesion segmentation: application in patients with brain tumors and acute ischemic stroke. Artzi M; Aizenstein O; Jonas-Kimchi T; Myers V; Hallevi H; Ben Bashat D Eur J Radiol; 2013 Sep; 82(9):1512-8. PubMed ID: 23796882 [TBL] [Abstract][Full Text] [Related]
12. In vivo quantitative evaluation of brain tissue damage in multiple sclerosis using gradient echo plural contrast imaging technique. Sati P; Cross AH; Luo J; Hildebolt CF; Yablonskiy DA Neuroimage; 2010 Jul; 51(3):1089-97. PubMed ID: 20338247 [TBL] [Abstract][Full Text] [Related]
13. 3D FLAIRED: 3D fluid attenuated inversion recovery for enhanced detection of lesions in multiple sclerosis. Polak P; Magnano C; Zivadinov R; Poloni G Magn Reson Med; 2012 Sep; 68(3):874-81. PubMed ID: 22139997 [TBL] [Abstract][Full Text] [Related]
14. Spatial decision forests for MS lesion segmentation in multi-channel MR images. Geremia E; Menze BH; Clatz O; Konukoglu E; Criminisi A; Ayache N Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):111-8. PubMed ID: 20879221 [TBL] [Abstract][Full Text] [Related]
15. Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Nakamura K; Fisher E Neuroimage; 2009 Feb; 44(3):769-76. PubMed ID: 19007895 [TBL] [Abstract][Full Text] [Related]
16. Optimal combination of FLAIR and T2-weighted MRI for improved lesion contrast in multiple sclerosis. Gabr RE; Hasan KM; Haque ME; Nelson FM; Wolinsky JS; Narayana PA J Magn Reson Imaging; 2016 Nov; 44(5):1293-1300. PubMed ID: 27126898 [TBL] [Abstract][Full Text] [Related]
17. Automatic lesion incidence estimation and detection in multiple sclerosis using multisequence longitudinal MRI. Sweeney EM; Shinohara RT; Shea CD; Reich DS; Crainiceanu CM AJNR Am J Neuroradiol; 2013 Jan; 34(1):68-73. PubMed ID: 22766673 [TBL] [Abstract][Full Text] [Related]
19. An approach to comparing accuracies of two FLAIR MR sequences in the detection of multiple sclerosis lesions in the brain in the absence of gold standard. Bilello M; Suri N; Krejza J; Woo JH; Bagley LJ; Mamourian AC; Vossough A; Chen JY; Millian BR; Mulderink T; Markowitz CE; Melhem ER Acad Radiol; 2010 Jun; 17(6):686-95. PubMed ID: 20457413 [TBL] [Abstract][Full Text] [Related]
20. Automatic segmentation of the caudate nucleus from human brain MR images. Xia Y; Bettinger K; Shen L; Reiss AL IEEE Trans Med Imaging; 2007 Apr; 26(4):509-17. PubMed ID: 17427738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]