These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24004986)

  • 1. MEGADOCK 3.0: a high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments.
    Matsuzaki Y; Uchikoga N; Ohue M; Shimoda T; Sato T; Ishida T; Akiyama Y
    Source Code Biol Med; 2013 Sep; 8(1):18. PubMed ID: 24004986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data.
    Ohue M; Matsuzaki Y; Uchikoga N; Ishida T; Akiyama Y
    Protein Pept Lett; 2014; 21(8):766-78. PubMed ID: 23855673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions.
    Hayashi T; Matsuzaki Y; Yanagisawa K; Ohue M; Akiyama Y
    BMC Bioinformatics; 2018 May; 19(Suppl 4):62. PubMed ID: 29745830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers.
    Ohue M; Shimoda T; Suzuki S; Matsuzaki Y; Ishida T; Akiyama Y
    Bioinformatics; 2014 Nov; 30(22):3281-3. PubMed ID: 25100686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEGADOCK-on-Colab: an easy-to-use protein-protein docking tool on Google Colaboratory.
    Ohue M
    BMC Res Notes; 2023 Sep; 16(1):229. PubMed ID: 37737185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-protein interaction network prediction by using rigid-body docking tools: application to bacterial chemotaxis.
    Matsuzaki Y; Ohue M; Uchikoga N; Akiyama Y
    Protein Pept Lett; 2014; 21(8):790-8. PubMed ID: 23855669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly precise protein-protein interaction prediction based on consensus between template-based and de novo docking methods.
    Ohue M; Matsuzaki Y; Shimoda T; Ishida T; Akiyama Y
    BMC Proc; 2013 Dec; 7(Suppl 7):S6. PubMed ID: 24564962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast parallel Markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse format.
    Bustamam A; Burrage K; Hamilton NA
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(3):679-92. PubMed ID: 21483031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel workflow manager for non-parallel bioinformatic applications to solve large-scale biological problems on a supercomputer.
    Suplatov D; Popova N; Zhumatiy S; Voevodin V; Švedas V
    J Bioinform Comput Biol; 2016 Apr; 14(2):1641008. PubMed ID: 27122320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines.
    Zhang X; Wong SE; Lightstone FC
    J Comput Chem; 2013 Apr; 34(11):915-27. PubMed ID: 23345155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMIDE v2: High-Throughput Screening Based on AutoDock-GPU and Improved Workflow Leading to Better Performance and Reliability.
    Darme P; Dauchez M; Renard A; Voutquenne-Nazabadioko L; Aubert D; Escotte-Binet S; Renault JH; Villena I; Steffenel LA; Baud S
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spresso: an ultrafast compound pre-screening method based on compound decomposition.
    Yanagisawa K; Komine S; Suzuki SD; Ohue M; Ishida T; Akiyama Y
    Bioinformatics; 2017 Dec; 33(23):3836-3843. PubMed ID: 28369284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MPI/OpenMP Hybrid Parallel Algorithm of Resolution of Identity Second-Order Møller-Plesset Perturbation Calculation for Massively Parallel Multicore Supercomputers.
    Katouda M; Nakajima T
    J Chem Theory Comput; 2013 Dec; 9(12):5373-80. PubMed ID: 26592275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico screening of protein-protein interactions with all-to-all rigid docking and clustering: an application to pathway analysis.
    Matsuzaki Y; Matsuzaki Y; Sato T; Akiyama Y
    J Bioinform Comput Biol; 2009 Dec; 7(6):991-1012. PubMed ID: 20014475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel Processing Transport Model MT3DMS by Using OpenMP.
    Huang L; Wang L; Shao J; Liu X; Hao Q; Xing L; Zheng L; Xiao Y
    Int J Environ Res Public Health; 2018 May; 15(6):. PubMed ID: 29794989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Midpoint cell method for hybrid (MPI+OpenMP) parallelization of molecular dynamics simulations.
    Jung J; Mori T; Sugita Y
    J Comput Chem; 2014 May; 35(14):1064-72. PubMed ID: 24659253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MPI/OpenMP hybrid parallel algorithm for resolution of identity second-order Møller-Plesset perturbation calculation of analytical energy gradient for massively parallel multicore supercomputers.
    Katouda M; Nakajima T
    J Comput Chem; 2017 Mar; 38(8):489-507. PubMed ID: 28133838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MPI-GWAS: a supercomputing-aided permutation approach for genomewide association studies.
    Paik H; Cho Y; Cho SB; Kwon OK
    Genomics Inform; 2022 Mar; 20(1):e14. PubMed ID: 35399013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilevel Parallelization of AutoDock 4.2.
    Norgan AP; Coffman PK; Kocher JP; Katzmann DJ; Sosa CP
    J Cheminform; 2011 Apr; 3(1):12. PubMed ID: 21527034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New TNT routines for parallel computing with MPI.
    Morales ME; Goloboff PA
    Mol Phylogenet Evol; 2023 Jan; 178():107643. PubMed ID: 36216302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.