These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 24005260)
1. TBSS and probabilistic tractography reveal white matter connections for attention to object features. Mayer KM; Vuong QC Brain Struct Funct; 2014 Nov; 219(6):2159-71. PubMed ID: 24005260 [TBL] [Abstract][Full Text] [Related]
2. Fiber pathways of attention subnetworks revealed with tract-based spatial statistics (TBSS) and probabilistic tractography. Ge H; Yin X; Xu J; Tang Y; Han Y; Xu W; Pang Z; Meng H; Liu S PLoS One; 2013; 8(11):e78831. PubMed ID: 24223852 [TBL] [Abstract][Full Text] [Related]
3. Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain. Kamali A; Sair HI; Radmanesh A; Hasan KM Neuroscience; 2014 Sep; 277():577-83. PubMed ID: 25086308 [TBL] [Abstract][Full Text] [Related]
4. Integrating brain function and structure in the study of the human attentional networks: a functionnectome study. Martín-Signes M; Paz-Alonso PM; Thiebaut de Schotten M; Chica AB Brain Struct Funct; 2024 Sep; 229(7):1665-1679. PubMed ID: 38969933 [TBL] [Abstract][Full Text] [Related]
5. Frontal cortical regions associated with attention connect more strongly to central than peripheral V1. Sims SA; Demirayak P; Cedotal S; Visscher KM Neuroimage; 2021 Sep; 238():118246. PubMed ID: 34111516 [TBL] [Abstract][Full Text] [Related]
6. Asymmetry and Structure of the Fronto-Parietal Networks Underlie Visuomotor Processing in Humans. Budisavljevic S; Dell'Acqua F; Zanatto D; Begliomini C; Miotto D; Motta R; Castiello U Cereb Cortex; 2017 Feb; 27(2):1532-1544. PubMed ID: 26759477 [TBL] [Abstract][Full Text] [Related]
7. Bilateral dorsal and ventral fiber pathways for the processing of affective prosody identified by probabilistic fiber tracking. Frühholz S; Gschwind M; Grandjean D Neuroimage; 2015 Apr; 109():27-34. PubMed ID: 25583613 [TBL] [Abstract][Full Text] [Related]
8. Imaging white-matter pathways of the auditory system with diffusion imaging tractography. Maffei C; Soria G; Prats-Galino A; Catani M Handb Clin Neurol; 2015; 129():277-88. PubMed ID: 25726275 [TBL] [Abstract][Full Text] [Related]
9. An investigation of the white matter microstructure in motion detection using diffusion MRI. Csete G; Szabó N; Rokszin A; Tóth E; Braunitzer G; Benedek G; Vécsei L; Kincses ZT Brain Res; 2014 Jun; 1570():35-42. PubMed ID: 24833063 [TBL] [Abstract][Full Text] [Related]
10. Brain region white matter associations with visual selective attention. Seiler CB; Jones KE; Shera D; Armstrong CL Brain Imaging Behav; 2011 Dec; 5(4):262-73. PubMed ID: 21720733 [TBL] [Abstract][Full Text] [Related]
11. Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: an automated MRI structural connectivity study. Rose S; Pannek K; Bell C; Baumann F; Hutchinson N; Coulthard A; McCombe P; Henderson R Neuroimage; 2012 Feb; 59(3):2661-9. PubMed ID: 21893207 [TBL] [Abstract][Full Text] [Related]
12. Frontoparietal activity and its structural connectivity in binocular rivalry. Wilcke JC; O'Shea RP; Watts R Brain Res; 2009 Dec; 1305():96-107. PubMed ID: 19782667 [TBL] [Abstract][Full Text] [Related]
13. Neural mechanisms of visual attention: object-based selection of a region in space. Arrington CM; Carr TH; Mayer AR; Rao SM J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651 [TBL] [Abstract][Full Text] [Related]
14. White matter microstructure of attentional networks predicts attention and consciousness functional interactions. Chica AB; Thiebaut de Schotten M; Bartolomeo P; Paz-Alonso PM Brain Struct Funct; 2018 Mar; 223(2):653-668. PubMed ID: 28905109 [TBL] [Abstract][Full Text] [Related]
15. Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames. Wilson KD; Woldorff MG; Mangun GR Neuroimage; 2005 Apr; 25(3):668-83. PubMed ID: 15808968 [TBL] [Abstract][Full Text] [Related]
16. EEG functional connectivity is partially predicted by underlying white matter connectivity. Chu CJ; Tanaka N; Diaz J; Edlow BL; Wu O; Hämäläinen M; Stufflebeam S; Cash SS; Kramer MA Neuroimage; 2015 Mar; 108():23-33. PubMed ID: 25534110 [TBL] [Abstract][Full Text] [Related]
17. Healthy aging by staying selectively connected: a mini-review. Antonenko D; Flöel A Gerontology; 2014; 60(1):3-9. PubMed ID: 24080587 [TBL] [Abstract][Full Text] [Related]
18. White matter and visuospatial processing in autism: a constrained spherical deconvolution tractography study. McGrath J; Johnson K; O'Hanlon E; Garavan H; Gallagher L; Leemans A Autism Res; 2013 Oct; 6(5):307-19. PubMed ID: 23509018 [TBL] [Abstract][Full Text] [Related]
19. A Connectomic Atlas of the Human Cerebrum-Chapter 10: Tractographic Description of the Superior Longitudinal Fasciculus. Conner AK; Briggs RG; Rahimi M; Sali G; Baker CM; Burks JD; Glenn CA; Battiste JD; Sughrue ME Oper Neurosurg (Hagerstown); 2018 Dec; 15(suppl_1):S407-S422. PubMed ID: 30260421 [TBL] [Abstract][Full Text] [Related]
20. White-matter connectivity between face-responsive regions in the human brain. Gschwind M; Pourtois G; Schwartz S; Van De Ville D; Vuilleumier P Cereb Cortex; 2012 Jul; 22(7):1564-76. PubMed ID: 21893680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]