These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 24005319)
1. Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy. Lefebvre V; Du Q; Baird S; Ng AC; Nascimento M; Campanella M; McBride HM; Screaton RA Autophagy; 2013 Nov; 9(11):1770-9. PubMed ID: 24005319 [TBL] [Abstract][Full Text] [Related]
2. High-content functional genomic screening to identify novel regulators of the PINK1-Parkin pathway. Ng AC; Baird SD; Screaton RA Methods Enzymol; 2014; 547():1-20. PubMed ID: 25416349 [TBL] [Abstract][Full Text] [Related]
3. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Bertolin G; Ferrando-Miguel R; Jacoupy M; Traver S; Grenier K; Greene AW; Dauphin A; Waharte F; Bayot A; Salamero J; Lombès A; Bulteau AL; Fon EA; Brice A; Corti O Autophagy; 2013 Nov; 9(11):1801-17. PubMed ID: 24149440 [TBL] [Abstract][Full Text] [Related]
4. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects. Callegari S; Oeljeklaus S; Warscheid B; Dennerlein S; Thumm M; Rehling P; Dudek J Autophagy; 2017 Jan; 13(1):201-211. PubMed ID: 27846363 [TBL] [Abstract][Full Text] [Related]
5. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Gao F; Chen D; Si J; Hu Q; Qin Z; Fang M; Wang G Hum Mol Genet; 2015 May; 24(9):2528-38. PubMed ID: 25612572 [TBL] [Abstract][Full Text] [Related]
6. Temporal dynamics of PARK2/parkin and OPTN/optineurin recruitment during the mitophagy of damaged mitochondria. Wong YC; Holzbaur EL Autophagy; 2015; 11(2):422-4. PubMed ID: 25801386 [TBL] [Abstract][Full Text] [Related]
7. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Ito S; Araya J; Kurita Y; Kobayashi K; Takasaka N; Yoshida M; Hara H; Minagawa S; Wakui H; Fujii S; Kojima J; Shimizu K; Numata T; Kawaishi M; Odaka M; Morikawa T; Harada T; Nishimura SL; Kaneko Y; Nakayama K; Kuwano K Autophagy; 2015; 11(3):547-59. PubMed ID: 25714760 [TBL] [Abstract][Full Text] [Related]
8. NBR1 is dispensable for PARK2-mediated mitophagy regardless of the presence or absence of SQSTM1. Shi J; Fung G; Deng H; Zhang J; Fiesel FC; Springer W; Li X; Luo H Cell Death Dis; 2015 Oct; 6(10):e1943. PubMed ID: 26512954 [TBL] [Abstract][Full Text] [Related]
9. PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer's disease. Martín-Maestro P; Gargini R; Perry G; Avila J; García-Escudero V Hum Mol Genet; 2016 Feb; 25(4):792-806. PubMed ID: 26721933 [TBL] [Abstract][Full Text] [Related]
10. The PARK2/Parkin receptor on damaged mitochondria revisited-uncovering the role of phosphorylated ubiquitin chains. Matsuda N; Tanaka K Autophagy; 2015; 11(9):1700-1. PubMed ID: 26213095 [TBL] [Abstract][Full Text] [Related]
11. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Jin SM; Youle RJ Autophagy; 2013 Nov; 9(11):1750-7. PubMed ID: 24149988 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide RNAi screen identifies the Parkinson disease GWAS risk locus SREBF1 as a regulator of mitophagy. Ivatt RM; Sanchez-Martinez A; Godena VK; Brown S; Ziviani E; Whitworth AJ Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8494-9. PubMed ID: 24912190 [TBL] [Abstract][Full Text] [Related]
13. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Tang C; Han H; Yan M; Zhu S; Liu J; Liu Z; He L; Tan J; Liu Y; Liu H; Sun L; Duan S; Peng Y; Liu F; Yin XM; Zhang Z; Dong Z Autophagy; 2018; 14(5):880-897. PubMed ID: 29172924 [TBL] [Abstract][Full Text] [Related]
16. Mitophagy in cells with mtDNA mutations: being sick is not enough. de Vries RL; Gilkerson RW; Przedborski S; Schon EA Autophagy; 2012 Apr; 8(4):699-700. PubMed ID: 22361618 [TBL] [Abstract][Full Text] [Related]
17. Integrated proteogenetic analysis reveals the landscape of a mitochondrial-autophagosome synapse during PARK2-dependent mitophagy. Heo JM; Harper NJ; Paulo JA; Li M; Xu Q; Coughlin M; Elledge SJ; Harper JW Sci Adv; 2019 Nov; 5(11):eaay4624. PubMed ID: 31723608 [TBL] [Abstract][Full Text] [Related]
18. PINK1- and PARK2-mediated local mitophagy in distal neuronal axons. Ashrafi G; Schwarz TL Autophagy; 2015; 11(1):187-9. PubMed ID: 25607607 [TBL] [Abstract][Full Text] [Related]
19. Pink1/PARK2/mROS-Dependent Mitophagy Initiates the Sensitization of Cancer Cells to Radiation. Yu L; Yang X; Li X; Qin L; Xu W; Cui H; Jia Z; He Q; Wang Z Oxid Med Cell Longev; 2021; 2021():5595652. PubMed ID: 34306311 [TBL] [Abstract][Full Text] [Related]
20. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Hasson SA; Kane LA; Yamano K; Huang CH; Sliter DA; Buehler E; Wang C; Heman-Ackah SM; Hessa T; Guha R; Martin SE; Youle RJ Nature; 2013 Dec; 504(7479):291-5. PubMed ID: 24270810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]