These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24005603)

  • 1. PEGylated gold nanorod separation based on aspect ratio: characterization by asymmetric-flow field flow fractionation with UV-Vis detection.
    Nguyen TM; Gigault J; Hackley VA
    Anal Bioanal Chem; 2014 Feb; 406(6):1651-9. PubMed ID: 24005603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanorod separation and characterization by asymmetric-flow field flow fractionation with UV-Vis detection.
    Gigault J; Cho TJ; MacCuspie RI; Hackley VA
    Anal Bioanal Chem; 2013 Feb; 405(4):1191-202. PubMed ID: 23151656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ monitoring, separation, and characterization of gold nanorod transformation during seed-mediated synthesis.
    Nguyen TM; Pettibone JM; Gigault J; Hackley VA
    Anal Bioanal Chem; 2016 Mar; 408(9):2195-201. PubMed ID: 26873210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of narrow dispersity gold nanorods by asymmetrical flow field-flow fractionation and investigation of surface plasmon resonance.
    Runyon JR; Goering A; Yong KT; Williams SK
    Anal Chem; 2013 Jan; 85(2):940-8. PubMed ID: 23215235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the influence of PEG molecular weight on the separation of PEGylated gold nanoparticles by asymmetric-flow field-flow fractionation.
    Hansen M; Smith MC; Crist RM; Clogston JD; McNeil SE
    Anal Bioanal Chem; 2015 Nov; 407(29):8661-72. PubMed ID: 26449845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles.
    Bendixen N; Losert S; Adlhart C; Lattuada M; Ulrich A
    J Chromatogr A; 2014 Mar; 1334():92-100. PubMed ID: 24556173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractionation and characterization of gold nanoparticles in aqueous solution: asymmetric-flow field flow fractionation with MALS, DLS, and UV-Vis detection.
    Cho TJ; Hackley VA
    Anal Bioanal Chem; 2010 Nov; 398(5):2003-18. PubMed ID: 20803340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the formation of biocompatible gold nanorods for cancer research: functionalization, stabilization and purification.
    Bogliotti N; Oberleitner B; Di-Cicco A; Schmidt F; Florent JC; Semetey V
    J Colloid Interface Sci; 2011 May; 357(1):75-81. PubMed ID: 21334635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of retention behavior for gold nanorods in asymmetrical flow field-flow fractionation.
    El Hadri H; Gigault J; Tan J; Hackley VA
    Anal Bioanal Chem; 2018 Nov; 410(27):6977-6984. PubMed ID: 30194453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-range alignment of gold nanorods in electrospun polymer nano/microfibers.
    Roskov KE; Kozek KA; Wu WC; Chhetri RK; Oldenburg AL; Spontak RJ; Tracy JB
    Langmuir; 2011 Dec; 27(23):13965-9. PubMed ID: 21834540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new analytical approach based on asymmetrical flow field-flow fractionation coupled to ultraviolet spectrometry and light scattering detection for SWCNT aqueous dispersion studies.
    Gigault J; Grassl B; Lespes G
    Analyst; 2012 Feb; 137(4):917-23. PubMed ID: 22183582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-wall carbon nanotube aqueous dispersion monitoring by using A4F-UV-MALS.
    Gigault J; Grassl B; Lespes G
    Anal Bioanal Chem; 2011 Dec; 401(10):3345-53. PubMed ID: 21947030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation.
    Calzolai L; Gilliland D; Garcìa CP; Rossi F
    J Chromatogr A; 2011 Jul; 1218(27):4234-9. PubMed ID: 21288528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of phase separation behavior and formation of plasmonic nanocomposites from polypeptide-gold nanorod nanoassemblies.
    Huang HC; Nanda A; Rege K
    Langmuir; 2012 Apr; 28(16):6645-55. PubMed ID: 22394160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacement of CTAB with peptidic ligands at the surface of gold nanorods and their self-assembling properties.
    Hamon C; Bizien T; Artzner F; Even-Hernandez P; Marchi V
    J Colloid Interface Sci; 2014 Jun; 424():90-7. PubMed ID: 24767503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipid stabilized gold nanorods: towards improved colloidal stability and biocompatibility.
    Santhosh PB; Thomas N; Sudhakar S; Chadha A; Mani E
    Phys Chem Chem Phys; 2017 Jul; 19(28):18494-18504. PubMed ID: 28682382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasmall gold nanorods: synthesis and glycocalyx-related permeability in human endothelial cells.
    Cheng MJ; Bal NN; Prabakaran P; Kumar R; Webster TJ; Sridhar S; Ebong EE
    Int J Nanomedicine; 2019; 14():319-333. PubMed ID: 30697044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High aspect ratio gold nanorods displayed augmented cellular internalization and surface chemistry mediated cytotoxicity.
    DeBrosse MC; Comfort KK; Untener EA; Comfort DA; Hussain SM
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4094-100. PubMed ID: 23910319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size sorting of citrate reduced gold nanoparticles by sedimentation field-flow fractionation.
    Contado C; Argazzi R
    J Chromatogr A; 2009 Dec; 1216(52):9088-98. PubMed ID: 19717161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple functionalization strategies for enhancing nanoparticle separation and recovery with asymmetric flow field flow fractionation.
    Mudalige TK; Qu H; Sánchez-Pomales G; Sisco PN; Linder SW
    Anal Chem; 2015 Feb; 87(3):1764-72. PubMed ID: 25556296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.