These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24005774)

  • 1. Comparisons of power of statistical methods for gene-environment interaction analyses.
    Ege MJ; Strachan DP
    Eur J Epidemiol; 2013 Oct; 28(10):785-97. PubMed ID: 24005774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved two-step testing of genome-wide gene-environment interactions.
    Kawaguchi ES; Kim AE; Lewinger JP; Gauderman WJ
    Genet Epidemiol; 2023 Mar; 47(2):152-166. PubMed ID: 36571162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Bayes model averaging to leverage both gene main effects and G ×  E interactions to identify genomic regions in genome-wide association studies.
    Moss LC; Gauderman WJ; Lewinger JP; Conti DV
    Genet Epidemiol; 2019 Mar; 43(2):150-165. PubMed ID: 30456811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables.
    Hecker J; Prokopenko D; Moll M; Lee S; Kim W; Qiao D; Voorhies K; Kim W; Vansteelandt S; Hobbs BD; Cho MH; Silverman EK; Lutz SM; DeMeo DL; Weiss ST; Lange C
    PLoS Genet; 2022 Nov; 18(11):e1010464. PubMed ID: 36383614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unified set-based test with adaptive filtering for gene-environment interaction analyses.
    Liu Q; Chen LS; Nicolae DL; Pierce BL
    Biometrics; 2016 Jun; 72(2):629-38. PubMed ID: 26496228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural and orthogonal interaction framework for modeling gene-environment interactions with application to lung cancer.
    Ma J; Xiao F; Xiong M; Andrew AS; Brenner H; Duell EJ; Haugen A; Hoggart C; Hung RJ; Lazarus P; Liu C; Matsuo K; Mayordomo JI; Schwartz AG; Staratschek-Jox A; Wichmann E; Yang P; Amos CI
    Hum Hered; 2012; 73(4):185-94. PubMed ID: 22889990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-step hypothesis testing to detect gene-environment interactions in a genome-wide scan with a survival endpoint.
    Kawaguchi ES; Li G; Lewinger JP; Gauderman WJ
    Stat Med; 2022 Apr; 41(9):1644-1657. PubMed ID: 35075649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying significant gene-environment interactions using a combination of screening testing and hierarchical false discovery rate control.
    Frost HR; Shen L; Saykin AJ; Williams SM; Moore JH;
    Genet Epidemiol; 2016 Nov; 40(7):544-557. PubMed ID: 27578615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finding novel genes by testing G × E interactions in a genome-wide association study.
    Gauderman WJ; Zhang P; Morrison JL; Lewinger JP
    Genet Epidemiol; 2013 Sep; 37(6):603-13. PubMed ID: 23873611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jackknife-based gene-gene interactiontests for untyped SNPs.
    Song M
    BMC Genet; 2015 Jul; 16():85. PubMed ID: 26187382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies.
    Hüls A; Krämer U; Carlsten C; Schikowski T; Ickstadt K; Schwender H
    BMC Genet; 2017 Dec; 18(1):115. PubMed ID: 29246113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.
    Zhang P; Lewinger JP; Conti D; Morrison JL; Gauderman WJ
    Genet Epidemiol; 2016 Jul; 40(5):394-403. PubMed ID: 27230133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subset-Based Analysis Using Gene-Environment Interactions for Discovery of Genetic Associations across Multiple Studies or Phenotypes.
    Yu Y; Xia L; Lee S; Zhou X; Stringham HM; Boehnke M; Mukherjee B
    Hum Hered; 2018; 83(6):283-314. PubMed ID: 31132756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The case-only test for gene-environment interaction is not uniformly powerful: an empirical example.
    Wu C; Chang J; Ma B; Miao X; Zhou Y; Liu Y; Li Y; Wu T; Hu Z; Shen H; Jia W; Zeng Y; Lin D; Kraft P
    Genet Epidemiol; 2013 May; 37(4):402-7. PubMed ID: 23595356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting genetic interactions for quantitative traits with U-statistics.
    Li M; Ye C; Fu W; Elston RC; Lu Q
    Genet Epidemiol; 2011 Sep; 35(6):457-68. PubMed ID: 21618602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Linkage Analysis to Detect Gene-Gene Interactions. 2. Improved Reliability and Extension to More-Complex Models.
    Hodge SE; Hager VR; Greenberg DA
    PLoS One; 2016; 11(1):e0146240. PubMed ID: 26752287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening and replication using the same data set: testing strategies for family-based studies in which all probands are affected.
    Murphy A; Weiss ST; Lange C
    PLoS Genet; 2008 Sep; 4(9):e1000197. PubMed ID: 18802462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects.
    Aschard H; Hancock DB; London SJ; Kraft P
    Hum Hered; 2010; 70(4):292-300. PubMed ID: 21293137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. METAINTER: meta-analysis of multiple regression models in genome-wide association studies.
    Vaitsiakhovich T; Drichel D; Herold C; Lacour A; Becker T
    Bioinformatics; 2015 Jan; 31(2):151-7. PubMed ID: 25252781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.