These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 24005849)
1. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing. Jones MO; Kimball JS; Small EE; Larson KM Int J Biometeorol; 2014 Aug; 58(6):1305-15. PubMed ID: 24005849 [TBL] [Abstract][Full Text] [Related]
2. Satellite microwave detection of boreal forest recovery from the extreme 2004 wildfires in Alaska and Canada. Jones MO; Kimball JS; Jones LA Glob Chang Biol; 2013 Oct; 19(10):3111-22. PubMed ID: 23749682 [TBL] [Abstract][Full Text] [Related]
3. Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2. Meroni M; d'Andrimont R; Vrieling A; Fasbender D; Lemoine G; Rembold F; Seguini L; Verhegghen A Remote Sens Environ; 2021 Feb; 253():112232. PubMed ID: 33536689 [TBL] [Abstract][Full Text] [Related]
4. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland. Ren S; Chen X; An S Int J Biometeorol; 2017 Apr; 61(4):601-612. PubMed ID: 27562030 [TBL] [Abstract][Full Text] [Related]
5. Variability and evolution of global land surface phenology over the past three decades (1982-2012). Garonna I; de Jong R; Schaepman ME Glob Chang Biol; 2016 Apr; 22(4):1456-68. PubMed ID: 26924776 [TBL] [Abstract][Full Text] [Related]
6. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982-2011). Garonna I; de Jong R; de Wit AJ; Mücher CA; Schmid B; Schaepman ME Glob Chang Biol; 2014 Nov; 20(11):3457-70. PubMed ID: 24797086 [TBL] [Abstract][Full Text] [Related]
7. Trends in land surface phenology across the conterminous United States (1982-2016) analyzed by NEON domains. Liang L; Henebry GM; Liu L; Zhang X; Hsu LC Ecol Appl; 2021 Jul; 31(5):e02323. PubMed ID: 33655567 [TBL] [Abstract][Full Text] [Related]
8. A high spatial resolution land surface phenology dataset for AmeriFlux and NEON sites. Moon M; Richardson AD; Milliman T; Friedl MA Sci Data; 2022 Jul; 9(1):448. PubMed ID: 35896546 [TBL] [Abstract][Full Text] [Related]
9. A global increase in tree cover extends the growing season length as observed from satellite records. Fang Z; Brandt M; Wang L; Fensholt R Sci Total Environ; 2022 Feb; 806(Pt 3):151205. PubMed ID: 34710418 [TBL] [Abstract][Full Text] [Related]
10. A comparative study of satellite and ground-based phenology. Studer S; Stöckli R; Appenzeller C; Vidale PL Int J Biometeorol; 2007 May; 51(5):405-14. PubMed ID: 17235537 [TBL] [Abstract][Full Text] [Related]
11. Estimating carbon flux phenology with satellite-derived land surface phenology and climate drivers for different biomes: a synthesis of AmeriFlux observations. Zhu W; Chen G; Jiang N; Liu J; Mou M PLoS One; 2013; 8(12):e84990. PubMed ID: 24386441 [TBL] [Abstract][Full Text] [Related]
12. A satellite-derived dataset on vegetation phenology across Central Asia from 2001 to 2023. Ding C Data Brief; 2024 Jun; 54():110297. PubMed ID: 38962194 [TBL] [Abstract][Full Text] [Related]
13. Urban spring phenology in the middle temperate zone of China: dynamics and influence factors. Liang S; Shi P; Li H Int J Biometeorol; 2016 Apr; 60(4):531-44. PubMed ID: 26272052 [TBL] [Abstract][Full Text] [Related]
14. Codominant water control on global interannual variability and trends in land surface phenology and greenness. Forkel M; Migliavacca M; Thonicke K; Reichstein M; Schaphoff S; Weber U; Carvalhais N Glob Chang Biol; 2015 Sep; 21(9):3414-35. PubMed ID: 25882036 [TBL] [Abstract][Full Text] [Related]
15. Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River Delta, china. Han G; Xu J Environ Manage; 2013 Jul; 52(1):234-49. PubMed ID: 23740439 [TBL] [Abstract][Full Text] [Related]
16. Land surface phenology: What do we really 'see' from space? Helman D Sci Total Environ; 2018 Mar; 618():665-673. PubMed ID: 29037474 [TBL] [Abstract][Full Text] [Related]
17. Analysing long-term spatiotemporal land surface phenology patterns over the Iberian Peninsula using 250 m MODIS EVI2 data. Caparros-Santiago JA; Rodriguez-Galiano V Sci Total Environ; 2024 Dec; 954():176453. PubMed ID: 39312975 [TBL] [Abstract][Full Text] [Related]
18. The confounding effect of snow cover on assessing spring phenology from space: A new look at trends on the Tibetan Plateau. Huang K; Zhang Y; Tagesson T; Brandt M; Wang L; Chen N; Zu J; Jin H; Cai Z; Tong X; Cong N; Fensholt R Sci Total Environ; 2021 Feb; 756():144011. PubMed ID: 33316646 [TBL] [Abstract][Full Text] [Related]
19. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
20. Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression. Salinero-Delgado M; Estévez J; Pipia L; Belda S; Berger K; Gómez VP; Verrelst J Remote Sens (Basel); 2021 Dec; 14(1):146. PubMed ID: 36081813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]