These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24006373)

  • 1. Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking.
    Krawczyk K; Baker T; Shi J; Deane CM
    Protein Eng Des Sel; 2013 Oct; 26(10):621-9. PubMed ID: 24006373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Tools for Aiding Rational Antibody Design.
    Krawczyk K; Dunbar J; Deane CM
    Methods Mol Biol; 2017; 1529():399-416. PubMed ID: 27914064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis of the CDR Loops of Antigen Receptors.
    Wong WK; Leem J; Deane CM
    Front Immunol; 2019; 10():2454. PubMed ID: 31681328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting antibody complementarity determining region structures without classification.
    Choi Y; Deane CM
    Mol Biosyst; 2011 Dec; 7(12):3327-34. PubMed ID: 22011953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving B-cell epitope prediction and its application to global antibody-antigen docking.
    Krawczyk K; Liu X; Baker T; Shi J; Deane CM
    Bioinformatics; 2014 Aug; 30(16):2288-94. PubMed ID: 24753488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ABodyBuilder: Automated antibody structure prediction with data-driven accuracy estimation.
    Leem J; Dunbar J; Georges G; Shi J; Deane CM
    MAbs; 2016 Oct; 8(7):1259-1268. PubMed ID: 27392298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes in antibody Fab fragments upon binding and their consequences on the performance of docking algorithms.
    Barozet A; Bianciotto M; Siméon T; Minoux H; Cortés J
    Immunol Lett; 2018 Aug; 200():5-15. PubMed ID: 29885326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and docking of antibody structures with Rosetta.
    Weitzner BD; Jeliazkov JR; Lyskov S; Marze N; Kuroda D; Frick R; Adolf-Bryfogle J; Biswas N; Dunbrack RL; Gray JJ
    Nat Protoc; 2017 Feb; 12(2):401-416. PubMed ID: 28125104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parapred: antibody paratope prediction using convolutional and recurrent neural networks.
    Liberis E; Velickovic P; Sormanni P; Vendruscolo M; Liò P
    Bioinformatics; 2018 Sep; 34(17):2944-2950. PubMed ID: 29672675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab-Ligity: identifying sequence-dissimilar antibodies that bind to the same epitope.
    Wong WK; Robinson SA; Bujotzek A; Georges G; Lewis AP; Shi J; Snowden J; Taddese B; Deane CM
    MAbs; 2021; 13(1):1873478. PubMed ID: 33448242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OptCDR: a general computational method for the design of antibody complementarity determining regions for targeted epitope binding.
    Pantazes RJ; Maranas CD
    Protein Eng Des Sel; 2010 Nov; 23(11):849-58. PubMed ID: 20847101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational approach for studying antibody-antigen interactions without prior structural information: the anti-testosterone binding antibody as a case study.
    Koivuniemi A; Takkinen K; Nevanen T
    Proteins; 2017 Feb; 85(2):322-331. PubMed ID: 27936519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAbPred: a structure-based antibody prediction server.
    Dunbar J; Krawczyk K; Leem J; Marks C; Nowak J; Regep C; Georges G; Kelm S; Popovic B; Deane CM
    Nucleic Acids Res; 2016 Jul; 44(W1):W474-8. PubMed ID: 27131379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robustification of RosettaAntibody and Rosetta SnugDock.
    Jeliazkov JR; Frick R; Zhou J; Gray JJ
    PLoS One; 2021; 16(3):e0234282. PubMed ID: 33764990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies.
    Richardson E; Galson JD; Kellam P; Kelly DF; Smith SE; Palser A; Watson S; Deane CM
    MAbs; 2021; 13(1):1869406. PubMed ID: 33427589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based cross-docking analysis of antibody-antigen interactions.
    Kilambi KP; Gray JJ
    Sci Rep; 2017 Aug; 7(1):8145. PubMed ID: 28811664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models.
    Sircar A; Gray JJ
    PLoS Comput Biol; 2010 Jan; 6(1):e1000644. PubMed ID: 20098500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking.
    Sivasubramanian A; Sircar A; Chaudhury S; Gray JJ
    Proteins; 2009 Feb; 74(2):497-514. PubMed ID: 19062174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A germline knowledge based computational approach for determining antibody complementarity determining regions.
    Zhao S; Lu J
    Mol Immunol; 2010 Jan; 47(4):694-700. PubMed ID: 19939452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RosettaAntibodyDesign (RAbD): A general framework for computational antibody design.
    Adolf-Bryfogle J; Kalyuzhniy O; Kubitz M; Weitzner BD; Hu X; Adachi Y; Schief WR; Dunbrack RL
    PLoS Comput Biol; 2018 Apr; 14(4):e1006112. PubMed ID: 29702641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.