These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 2400642)
1. Chemical synthesis, absolute configuration, and stereochemistry of formation of 10-hydroxywarfarin: a major oxidative metabolite of (+)-(R)-warfarin from hepatic microsomal preparations. Lawrence RF; Rettie AE; Eddy AC; Trager WF Chirality; 1990; 2(2):96-105. PubMed ID: 2400642 [TBL] [Abstract][Full Text] [Related]
2. Human hepatic cytochrome P-450 composition as probed by in vitro microsomal metabolism of warfarin. Kaminsky LS; Dunbar DA; Wang PP; Beaune P; Larrey D; Guengerich FP; Schnellmann RG; Sipes IG Drug Metab Dispos; 1984; 12(4):470-7. PubMed ID: 6148215 [TBL] [Abstract][Full Text] [Related]
3. Substrate probes for the mechanism of aromatic hydroxylation catalyzed by cytochrome P-450: selectively deuterated analogues of warfarin. Bush ED; Trager WF J Med Chem; 1985 Aug; 28(8):992-6. PubMed ID: 4020838 [TBL] [Abstract][Full Text] [Related]
4. Warfarin: stereochemical aspects of its metabolism in vivo in the rat. Pohl LR; Bales R; Trager WF Res Commun Chem Pathol Pharmacol; 1976 Oct; 15(2):233-56. PubMed ID: 981784 [TBL] [Abstract][Full Text] [Related]
5. Phase II metabolism of warfarin in primary culture of adult rat hepatocytes. Jansing RL; Chao ES; Kaminsky LS Mol Pharmacol; 1992 Jan; 41(1):209-15. PubMed ID: 1732719 [TBL] [Abstract][Full Text] [Related]
6. Substrate probe for the mechanism of aromatic hydroxylation catalyzed by cytochrome P450. Darbyshire JF; Iyer KR; Grogan J; Korzekwa KR; Trager WF Drug Metab Dispos; 1996 Sep; 24(9):1038-45. PubMed ID: 8886617 [TBL] [Abstract][Full Text] [Related]
7. Cytochrome P450-dependent transformations of 15R- and 15S-hydroperoxyeicosatetraenoic acids: stereoselective formation of epoxy alcohol products. Chang MS; Boeglin WE; Guengerich FP; Brash AR Biochemistry; 1996 Jan; 35(2):464-71. PubMed ID: 8555216 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of warfarin hydroxylation catalyzed by human liver microsomes. Rettie AE; Eddy AC; Heimark LD; Gibaldi M; Trager WF Drug Metab Dispos; 1989; 17(3):265-70. PubMed ID: 2568906 [TBL] [Abstract][Full Text] [Related]
9. A new warfarin metabolite: structure and function. Fasco MJ; Dymerski PP; Wos JD; Kaminsky LS J Med Chem; 1978 Oct; 21(10):1054-9. PubMed ID: 722713 [TBL] [Abstract][Full Text] [Related]
10. Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement of CYP2D and CYP3A. Niwa T; Shiraga T; Mitani Y; Terakawa M; Tokuma Y; Kagayama A Drug Metab Dispos; 2000 Sep; 28(9):1128-34. PubMed ID: 10950860 [TBL] [Abstract][Full Text] [Related]
11. Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe. Kaminsky LS; de Morais SM; Faletto MB; Dunbar DA; Goldstein JA Mol Pharmacol; 1993 Feb; 43(2):234-9. PubMed ID: 8429826 [TBL] [Abstract][Full Text] [Related]
12. Selective inhibition of warfarin metabolism by diltiazem in humans. Abernethy DR; Kaminsky LS; Dickinson TH J Pharmacol Exp Ther; 1991 Apr; 257(1):411-5. PubMed ID: 2020000 [TBL] [Abstract][Full Text] [Related]
13. Genetic and developmental diversity of hepatic cytochromes P450. Warfarin and progesterone metabolism by hepatic microsomes from four inbred strains of rat. Kitareewan S; Walz FG Drug Metab Dispos; 1994; 22(4):607-15. PubMed ID: 7956737 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous determination of warfarin enantiomers and its metabolite in human plasma by column-switching high-performance liquid chromatography with chiral separation. Uno T; Niioka T; Hayakari M; Sugawara K; Tateishi T Ther Drug Monit; 2007 Jun; 29(3):333-9. PubMed ID: 17529891 [TBL] [Abstract][Full Text] [Related]
15. Warfarin-fluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Kunze KL; Wienkers LC; Thummel KE; Trager WF Drug Metab Dispos; 1996 Apr; 24(4):414-21. PubMed ID: 8801056 [TBL] [Abstract][Full Text] [Related]
16. Regioselectivity significantly impacts microsomal glucuronidation efficiency of R/S-6, 7-, and 8-hydroxywarfarin. Kim SY; Jones DR; Kang JY; Yun CH; Miller GP Xenobiotica; 2019 Apr; 49(4):397-403. PubMed ID: 29543105 [TBL] [Abstract][Full Text] [Related]
17. Quantitative liquid chromatography/mass spectrometry/mass spectrometry warfarin assay for in vitro cytochrome P450 studies. Zhang ZY; King BM; Wong YN Anal Biochem; 2001 Nov; 298(1):40-9. PubMed ID: 11673893 [TBL] [Abstract][Full Text] [Related]
18. Cytochrome P450 responsible for the stereoselective S-oxidation of flosequinan in hepatic microsomes from rats and humans. Kashiyama E; Yokoi T; Odomi M; Funae Y; Inoue K; Kamataki T Drug Metab Dispos; 1997 Jun; 25(6):716-24. PubMed ID: 9193873 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of (S)-warfarin metabolism by sulfinpyrazone and its metabolites. He M; Kunze KL; Trager WF Drug Metab Dispos; 1995 Jun; 23(6):659-63. PubMed ID: 7587949 [TBL] [Abstract][Full Text] [Related]
20. Hydroxywarfarin metabolites potently inhibit CYP2C9 metabolism of S-warfarin. Jones DR; Kim SY; Guderyon M; Yun CH; Moran JH; Miller GP Chem Res Toxicol; 2010 May; 23(5):939-45. PubMed ID: 20429590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]