BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2400642)

  • 1. Chemical synthesis, absolute configuration, and stereochemistry of formation of 10-hydroxywarfarin: a major oxidative metabolite of (+)-(R)-warfarin from hepatic microsomal preparations.
    Lawrence RF; Rettie AE; Eddy AC; Trager WF
    Chirality; 1990; 2(2):96-105. PubMed ID: 2400642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human hepatic cytochrome P-450 composition as probed by in vitro microsomal metabolism of warfarin.
    Kaminsky LS; Dunbar DA; Wang PP; Beaune P; Larrey D; Guengerich FP; Schnellmann RG; Sipes IG
    Drug Metab Dispos; 1984; 12(4):470-7. PubMed ID: 6148215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate probes for the mechanism of aromatic hydroxylation catalyzed by cytochrome P-450: selectively deuterated analogues of warfarin.
    Bush ED; Trager WF
    J Med Chem; 1985 Aug; 28(8):992-6. PubMed ID: 4020838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warfarin: stereochemical aspects of its metabolism in vivo in the rat.
    Pohl LR; Bales R; Trager WF
    Res Commun Chem Pathol Pharmacol; 1976 Oct; 15(2):233-56. PubMed ID: 981784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase II metabolism of warfarin in primary culture of adult rat hepatocytes.
    Jansing RL; Chao ES; Kaminsky LS
    Mol Pharmacol; 1992 Jan; 41(1):209-15. PubMed ID: 1732719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate probe for the mechanism of aromatic hydroxylation catalyzed by cytochrome P450.
    Darbyshire JF; Iyer KR; Grogan J; Korzekwa KR; Trager WF
    Drug Metab Dispos; 1996 Sep; 24(9):1038-45. PubMed ID: 8886617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome P450-dependent transformations of 15R- and 15S-hydroperoxyeicosatetraenoic acids: stereoselective formation of epoxy alcohol products.
    Chang MS; Boeglin WE; Guengerich FP; Brash AR
    Biochemistry; 1996 Jan; 35(2):464-71. PubMed ID: 8555216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of warfarin hydroxylation catalyzed by human liver microsomes.
    Rettie AE; Eddy AC; Heimark LD; Gibaldi M; Trager WF
    Drug Metab Dispos; 1989; 17(3):265-70. PubMed ID: 2568906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new warfarin metabolite: structure and function.
    Fasco MJ; Dymerski PP; Wos JD; Kaminsky LS
    J Med Chem; 1978 Oct; 21(10):1054-9. PubMed ID: 722713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement of CYP2D and CYP3A.
    Niwa T; Shiraga T; Mitani Y; Terakawa M; Tokuma Y; Kagayama A
    Drug Metab Dispos; 2000 Sep; 28(9):1128-34. PubMed ID: 10950860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe.
    Kaminsky LS; de Morais SM; Faletto MB; Dunbar DA; Goldstein JA
    Mol Pharmacol; 1993 Feb; 43(2):234-9. PubMed ID: 8429826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective inhibition of warfarin metabolism by diltiazem in humans.
    Abernethy DR; Kaminsky LS; Dickinson TH
    J Pharmacol Exp Ther; 1991 Apr; 257(1):411-5. PubMed ID: 2020000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and developmental diversity of hepatic cytochromes P450. Warfarin and progesterone metabolism by hepatic microsomes from four inbred strains of rat.
    Kitareewan S; Walz FG
    Drug Metab Dispos; 1994; 22(4):607-15. PubMed ID: 7956737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous determination of warfarin enantiomers and its metabolite in human plasma by column-switching high-performance liquid chromatography with chiral separation.
    Uno T; Niioka T; Hayakari M; Sugawara K; Tateishi T
    Ther Drug Monit; 2007 Jun; 29(3):333-9. PubMed ID: 17529891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warfarin-fluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies.
    Kunze KL; Wienkers LC; Thummel KE; Trager WF
    Drug Metab Dispos; 1996 Apr; 24(4):414-21. PubMed ID: 8801056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regioselectivity significantly impacts microsomal glucuronidation efficiency of R/S-6, 7-, and 8-hydroxywarfarin.
    Kim SY; Jones DR; Kang JY; Yun CH; Miller GP
    Xenobiotica; 2019 Apr; 49(4):397-403. PubMed ID: 29543105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative liquid chromatography/mass spectrometry/mass spectrometry warfarin assay for in vitro cytochrome P450 studies.
    Zhang ZY; King BM; Wong YN
    Anal Biochem; 2001 Nov; 298(1):40-9. PubMed ID: 11673893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome P450 responsible for the stereoselective S-oxidation of flosequinan in hepatic microsomes from rats and humans.
    Kashiyama E; Yokoi T; Odomi M; Funae Y; Inoue K; Kamataki T
    Drug Metab Dispos; 1997 Jun; 25(6):716-24. PubMed ID: 9193873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of (S)-warfarin metabolism by sulfinpyrazone and its metabolites.
    He M; Kunze KL; Trager WF
    Drug Metab Dispos; 1995 Jun; 23(6):659-63. PubMed ID: 7587949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxywarfarin metabolites potently inhibit CYP2C9 metabolism of S-warfarin.
    Jones DR; Kim SY; Guderyon M; Yun CH; Moran JH; Miller GP
    Chem Res Toxicol; 2010 May; 23(5):939-45. PubMed ID: 20429590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.