These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2400642)

  • 21. Cyclosporine metabolism by rat liver microsomes. Evidence for involvement of enzyme(s) other than cytochromes P-450 3A.
    Prueksaritanont T; Correia MA; Rettie AE; Swinney DC; Thomas PE; Benet LZ
    Drug Metab Dispos; 1993; 21(4):730-7. PubMed ID: 8104135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stereoselective metabolism of 7-chlorobenz(a)anthracene by rat liver microsomes. Absolute configurations and optical purities of trans-dihydrodiol metabolites.
    Fu PP; Von Tungeln LS; Chou MW
    Mol Pharmacol; 1985 Jul; 28(1):62-71. PubMed ID: 4021998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the oxidation of amine metabolites of nitrotoluenes by rat hepatic microsomes. N- and C-hydroxylation.
    Kedderis GL; Rickert DE
    Mol Pharmacol; 1985 Aug; 28(2):207-14. PubMed ID: 4022002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of quinidine on the 10-hydroxylation of R-warfarin: species differences and clearance projection.
    Chen Q; Tan E; Strauss JR; Zhang Z; Fenyk-Melody JE; Booth-Genthe C; Rushmore TH; Stearns RA; Evans DC; Baillie TA; Tang W
    J Pharmacol Exp Ther; 2004 Oct; 311(1):307-14. PubMed ID: 15163679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolism of 2-amino-alpha-carboline. A food-borne heterocyclic amine mutagen and carcinogen by human and rodent liver microsomes and by human cytochrome P4501A2.
    Raza H; King RS; Squires RB; Guengerich FP; Miller DW; Freeman JP; Lang NP; Kadlubar FF
    Drug Metab Dispos; 1996 Apr; 24(4):395-400. PubMed ID: 8801053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioactivation of tetrachloroethylene. Role of glutathione S-transferase-catalyzed conjugation versus cytochrome P-450-dependent phospholipid alkylation.
    Dekant W; Martens G; Vamvakas S; Metzler M; Henschler D
    Drug Metab Dispos; 1987; 15(5):702-9. PubMed ID: 2891489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9.
    He M; Korzekwa KR; Jones JP; Rettie AE; Trager WF
    Arch Biochem Biophys; 1999 Dec; 372(1):16-28. PubMed ID: 10562412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Major isozymes of rat liver microsomal cytochrome P-450 involved in the N-oxidation of N-isopropyl-alpha-(2-methylazo)-p-toluamide, the azo derivative of procarbazine.
    Prough RA; Brown MI; Dannan GA; Guengerich FP
    Cancer Res; 1984 Feb; 44(2):543-8. PubMed ID: 6692359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of substrate configuration on chlorpheniramine N-demethylation by hepatic microsomes from rats, rabbits, and mice.
    Thompson JA; Shioshita GW
    Drug Metab Dispos; 1981; 9(1):5-9. PubMed ID: 6111432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparisons of warfarin metabolism by liver microsomes of rats treated with a series of polybrominated biphenyl congeners and by the component-purified cytochrome P-450 isozymes.
    Kaminsky LS; Guengerich FP; Dannan GA; Aust SD
    Arch Biochem Biophys; 1983 Aug; 225(1):398-404. PubMed ID: 6311109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CYP2C9-catalyzed metabolism of S-warfarin to 7-hydroxywarfarin in vivo and in vitro in chimeric mice with humanized liver.
    Inoue T; Nitta K; Sugihara K; Horie T; Kitamura S; Ohta S
    Drug Metab Dispos; 2008 Dec; 36(12):2429-33. PubMed ID: 18784266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of oxidative warfarin metabolites by thermospray high-performance liquid chromatography/mass spectrometry.
    Spink DC; Aldous KM; Kaminsky LS
    Anal Biochem; 1989 Mar; 177(2):307-13. PubMed ID: 2729550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Warfarin. Stereochemical aspects of its metabolism and the interaction with phenylbutazone.
    Lewis RJ; Trager WF; Chan KK; Breckenridge A; Orme M; Roland M; Schary W
    J Clin Invest; 1974 Jun; 53(6):1607-17. PubMed ID: 4830225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms.
    Haining RL; Hunter AP; Veronese ME; Trager WF; Rettie AE
    Arch Biochem Biophys; 1996 Sep; 333(2):447-58. PubMed ID: 8809086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation.
    Mani C; Gelboin HV; Park SS; Pearce R; Parkinson A; Kupfer D
    Drug Metab Dispos; 1993; 21(4):645-56. PubMed ID: 8104124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly sensitive and specific high-performance liquid chromatographic analysis of 7-hydroxywarfarin, a marker for human cytochrome P-4502C9 activity.
    Lang D; Böcker R
    J Chromatogr B Biomed Appl; 1995 Oct; 672(2):305-9. PubMed ID: 8581139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stereoselectivity of styrene oxidation in microsomes and in purified cytochrome P-450 enzymes from rat liver.
    Foureman GL; Harris C; Guengerich FP; Bend JR
    J Pharmacol Exp Ther; 1989 Feb; 248(2):492-7. PubMed ID: 2918465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stereoselective acetonyl side chain reduction of warfarin and analogs. Partial characterization of two cytosolic carbonyl reductases.
    Hermans JJ; Thijssen HH
    Drug Metab Dispos; 1992; 20(2):268-74. PubMed ID: 1352220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potentiation of anticoagulant effect of warfarin caused by enantioselective metabolic inhibition by the uricosuric agent benzbromarone.
    Takahashi H; Sato T; Shimoyama Y; Shioda N; Shimizu T; Kubo S; Tamura N; Tainaka H; Yasumori T; Echizen H
    Clin Pharmacol Ther; 1999 Dec; 66(6):569-81. PubMed ID: 10613612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of 1-chloro-2-methylpropene. Evidence for reactive chloroaldehyde intermediates.
    Srinivas P; Burka LT
    Drug Metab Dispos; 1988; 16(3):449-54. PubMed ID: 2900739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.