These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24006965)

  • 1. Communication: Analytic gradients in the random-phase approximation.
    Rekkedal J; Coriani S; Iozzi MF; Teale AM; Helgaker T; Pedersen TB
    J Chem Phys; 2013 Aug; 139(8):081101. PubMed ID: 24006965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Communication: Random phase approximation renormalized many-body perturbation theory.
    Bates JE; Furche F
    J Chem Phys; 2013 Nov; 139(17):171103. PubMed ID: 24206280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2014 Sep; 141(12):124108. PubMed ID: 25273413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic Excited State Gradients for the QM/MM Polarizable Embedded Second-Order Algebraic Diagrammatic Construction for the Polarization Propagator PE-ADC(2).
    Marefat Khah A; Karbalaei Khani S; Hättig C
    J Chem Theory Comput; 2018 Sep; 14(9):4640-4650. PubMed ID: 30040882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed memory parallel implementation of energies and gradients for second-order Møller-Plesset perturbation theory with the resolution-of-the-identity approximation.
    Hättig C; Hellweg A; Köhn A
    Phys Chem Chem Phys; 2006 Mar; 8(10):1159-69. PubMed ID: 16633596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.
    Ren X; Tkatchenko A; Rinke P; Scheffler M
    Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical Energy Gradients in Range-Separated Hybrid Density Functional Theory with Random Phase Approximation.
    Mussard B; Szalay PG; Ángyán JG
    J Chem Theory Comput; 2014 May; 10(5):1968-79. PubMed ID: 26580524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing the random phase approximation into a practical post-Kohn-Sham correlation model.
    Furche F
    J Chem Phys; 2008 Sep; 129(11):114105. PubMed ID: 19044948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Ishimura K; Kitaura K
    J Chem Phys; 2011 Jul; 135(4):044110. PubMed ID: 21806093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-order nonadiabatic coupling matrix elements between excited states: a Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels.
    Li Z; Liu W
    J Chem Phys; 2014 Jul; 141(1):014110. PubMed ID: 25005280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic energy gradients in combined second order Møller-Plesset perturbation theory and conductorlike polarizable continuum model calculation.
    Si D; Li H
    J Chem Phys; 2011 Oct; 135(14):144107. PubMed ID: 22010698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable implementation of analytic gradients for second-order Z-averaged perturbation theory using the distributed data interface.
    Aikens CM; Fletcher GD; Schmidt MW; Gordon MS
    J Chem Phys; 2006 Jan; 124(1):14107. PubMed ID: 16409024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytic energy gradient in combined second-order Møller-Plesset perturbation theory and polarizable force field calculation.
    Li H
    J Phys Chem A; 2011 Oct; 115(42):11824-31. PubMed ID: 21905697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cubic-scaling algorithm and self-consistent field for the random-phase approximation with second-order screened exchange.
    Moussa JE
    J Chem Phys; 2014 Jan; 140(1):014107. PubMed ID: 24410221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions beyond direct random-phase approximation in the binding energy of solid ethane, ethylene, and acetylene.
    Pham KN; Modrzejewski M; Klimeš J
    J Chem Phys; 2024 Jun; 160(22):. PubMed ID: 38856055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.