These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24006968)

  • 1. Aris-Taylor dispersion with drift and diffusion of particles on the tube wall.
    Berezhkovskii AM; Skvortsov AT
    J Chem Phys; 2013 Aug; 139(8):084101. PubMed ID: 24006968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aris-Taylor dispersion in tubes with dead ends.
    Dagdug L; Berezhkovskii AM; Skvortsov AT
    J Chem Phys; 2014 Jul; 141(2):024705. PubMed ID: 25028036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biased diffusion in three-dimensional comb-like structures.
    Berezhkovskii AM; Dagdug L; Bezrukov SM
    J Chem Phys; 2015 Apr; 142(13):134101. PubMed ID: 25854222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Note: Aris-Taylor dispersion from single-particle point of view.
    Berezhkovskii AM
    J Chem Phys; 2012 Aug; 137(6):066101. PubMed ID: 22897315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective Diffusivity for Transport with Fluctuating Drift Velocity.
    Berezhkovskii AM; Szabo A
    J Phys Chem B; 2021 May; 125(17):4489-4493. PubMed ID: 33881851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Taylor-Aris diffusivity on analyte and system zone dispersion in CZE assessed by computer simulation and experimental validation.
    Caslavska J; Mosher RA; Thormann W
    Electrophoresis; 2015 Jul; 36(14):1529-38. PubMed ID: 25820794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First passage, looping, and direct transition in expanding and narrowing tubes: Effects of the entropy potential.
    Berezhkovskii AM; Dagdug L; Bezrukov SM
    J Chem Phys; 2017 Oct; 147(13):134104. PubMed ID: 28987083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.
    Daneyko A; Hlushkou D; Baranau V; Khirevich S; Seidel-Morgenstern A; Tallarek U
    J Chromatogr A; 2015 Aug; 1407():139-56. PubMed ID: 26162667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of first order chemical reactions on the dispersion coefficient associated with laminar flow through fibrosis affected lung.
    Kori J; Pratibha
    J Biomech; 2020 Jan; 99():109494. PubMed ID: 31753212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061201. PubMed ID: 16485937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective drift and diffusion of a particle jumping between mobile and immobile states.
    Berezhkovskii AM; Bezrukov SM
    J Electroanal Chem (Lausanne); 2011 Sep; 660(2):352-355. PubMed ID: 21966285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation and theory of open-tube dispersion in short and long capillaries with slip boundaries and retention.
    Beauchamp MD; Schure MR
    J Chromatogr A; 2019 Mar; 1588():85-98. PubMed ID: 30685185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stochastic view on column efficiency.
    Gritti F
    J Chromatogr A; 2018 Mar; 1540():55-67. PubMed ID: 29448995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient diffusion in a tube with dead ends.
    Dagdug L; Berezhkovskii AM; Makhnovskii YA; Zitserman VY
    J Chem Phys; 2007 Dec; 127(22):224712. PubMed ID: 18081419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture.
    James SC; Chrysikopoulos CV
    J Colloid Interface Sci; 2003 Jul; 263(1):288-95. PubMed ID: 12804914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice kinetic Monte Carlo simulations of convective-diffusive systems.
    Flamm MH; Diamond SL; Sinno T
    J Chem Phys; 2009 Mar; 130(9):094904. PubMed ID: 19275421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Driven diffusion in a periodically compartmentalized tube: homogeneity versus intermittency of particle motion.
    Makhnovskii YA; Berezhkovskii AM; Bogachev LV; Zitserman VY
    J Phys Chem B; 2011 Apr; 115(14):3992-4002. PubMed ID: 21417298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drift and diffusion in periodic potentials: upstream and downstream step times are distributed identically.
    Dagdug L; Berezhkovskii AM
    J Chem Phys; 2009 Aug; 131(5):056101. PubMed ID: 19673587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle dispersion through porous media with heterogeneous attractions.
    Darko WK; Mangal D; Conrad JC; Palmer JC
    Soft Matter; 2024 Jan; 20(4):837-847. PubMed ID: 38170621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusiophoresis of a charged particle in a microtube.
    Chiu HC; Keh HJ
    Electrophoresis; 2017 Oct; 38(19):2468-2478. PubMed ID: 28421618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.