These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 24006980)

  • 1. Efficient self-consistent treatment of electron correlation within the random phase approximation.
    Bleiziffer P; Heßelmann A; Görling A
    J Chem Phys; 2013 Aug; 139(8):084113. PubMed ID: 24006980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation.
    Bleiziffer P; Hesselmann A; Görling A
    J Chem Phys; 2012 Apr; 136(13):134102. PubMed ID: 22482535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust and accurate hybrid random-phase-approximation methods.
    Thierbach A; Schmidtel D; Görling A
    J Chem Phys; 2019 Oct; 151(14):144117. PubMed ID: 31615260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward chemical accuracy at low computational cost: Density-functional theory with σ-functionals for the correlation energy.
    Trushin E; Thierbach A; Görling A
    J Chem Phys; 2021 Jan; 154(1):014104. PubMed ID: 33412877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond.
    Verma P; Bartlett RJ
    J Chem Phys; 2012 Jan; 136(4):044105. PubMed ID: 22299859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaled σ-functionals for the Kohn-Sham correlation energy with scaling functions from the homogeneous electron gas.
    Erhard J; Fauser S; Trushin E; Görling A
    J Chem Phys; 2022 Sep; 157(11):114105. PubMed ID: 36137780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem.
    Bleiziffer P; Schmidtel D; Görling A
    J Chem Phys; 2014 Nov; 141(20):204107. PubMed ID: 25429933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and application of a new dual-hybrid random phase approximation.
    Mezei PD; Csonka GI; Ruzsinszky A; Kállay M
    J Chem Theory Comput; 2015 Oct; 11(10):4615-26. PubMed ID: 26574252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical accuracy with σ-functionals for the Kohn-Sham correlation energy optimized for different input orbitals and eigenvalues.
    Fauser S; Trushin E; Neiss C; Görling A
    J Chem Phys; 2021 Oct; 155(13):134111. PubMed ID: 34624971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Complete Basis Set Extrapolation of Direct Random Phase Correlation Energies.
    Mezei PD; Csonka GI; Ruzsinszky A
    J Chem Theory Comput; 2015 Aug; 11(8):3961-7. PubMed ID: 26574475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the equivalence of ring-coupled cluster and adiabatic connection fluctuation-dissipation theorem random phase approximation correlation energy expressions.
    Jansen G; Liu RF; Angyán JG
    J Chem Phys; 2010 Oct; 133(15):154106. PubMed ID: 20969369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytic energy gradients for the self-consistent direct random phase approximation.
    Thierbach A; Görling A
    J Chem Phys; 2020 Oct; 153(13):134113. PubMed ID: 33032399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Diels-Alder reaction energies from efficient density functional calculations.
    Mezei PD; Csonka GI; Kállay M
    J Chem Theory Comput; 2015 Jun; 11(6):2879-88. PubMed ID: 26575577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.
    Mussard B; Rocca D; Jansen G; Ángyán JG
    J Chem Theory Comput; 2016 May; 12(5):2191-202. PubMed ID: 26986444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient exact-exchange time-dependent density-functional theory methods and their relation to time-dependent Hartree-Fock.
    Hesselmann A; Görling A
    J Chem Phys; 2011 Jan; 134(3):034120. PubMed ID: 21261343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear-scaling implementation of the direct random-phase approximation.
    Kállay M
    J Chem Phys; 2015 May; 142(20):204105. PubMed ID: 26026432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation energies from particle-particle random phase approximation with accurate optimized effective potentials.
    Jin Y; Yang Y; Zhang D; Peng D; Yang W
    J Chem Phys; 2017 Oct; 147(13):134105. PubMed ID: 28987104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.