These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 24007027)

  • 1. Lennard-Jones systems near solid walls: computing interfacial free energies from molecular simulation methods.
    Benjamin R; Horbach J
    J Chem Phys; 2013 Aug; 139(8):084705. PubMed ID: 24007027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wall-liquid and wall-crystal interfacial free energies via thermodynamic integration: a molecular dynamics simulation study.
    Benjamin R; Horbach J
    J Chem Phys; 2012 Jul; 137(4):044707. PubMed ID: 22852644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs-Cahn integration.
    Laird BB; Davidchack RL; Yang Y; Asta M
    J Chem Phys; 2009 Sep; 131(11):114110. PubMed ID: 19778103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon-wall interfacial free energy via thermodynamics integration.
    Shou W; Pan H
    J Chem Phys; 2016 Nov; 145(18):184702. PubMed ID: 27846694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of the crystal-liquid interfacial free energy and the endpoint of the melting line.
    Baidakov VG; Protsenko SP; Tipeev AO
    J Chem Phys; 2013 Dec; 139(22):224703. PubMed ID: 24329078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial excess free energies of solid-liquid interfaces by molecular dynamics simulation and thermodynamic integration.
    Leroy F; Dos Santos DJ; Müller-Plathe F
    Macromol Rapid Commun; 2009 May; 30(9-10):864-70. PubMed ID: 21706670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of the interfacial free energy of a fluid at a static wall by Gibbs-Cahn integration.
    Laird BB; Davidchack RL
    J Chem Phys; 2010 May; 132(20):204101. PubMed ID: 20515082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: a molecular dynamics simulation study.
    Wang J; Apte PA; Morris JR; Zeng XC
    J Chem Phys; 2013 Sep; 139(11):114705. PubMed ID: 24070303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method.
    Leroy F; Müller-Plathe F
    J Chem Phys; 2010 Jul; 133(4):044110. PubMed ID: 20687636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct calculation of the crystal-melt interfacial free energy via molecular dynamics computer simulation.
    Laird BB; Davidchack RL
    J Phys Chem B; 2005 Sep; 109(38):17802-12. PubMed ID: 16853283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mold integration method for the calculation of the crystal-fluid interfacial free energy from simulations.
    Espinosa JR; Vega C; Sanz E
    J Chem Phys; 2014 Oct; 141(13):134709. PubMed ID: 25296830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding wetting of immiscible liquids near a solid surface using molecular simulation.
    Kumar V; Errington JR
    J Chem Phys; 2013 Aug; 139(6):064110. PubMed ID: 23947846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal-liquid interfacial free energy via thermodynamic integration.
    Benjamin R; Horbach J
    J Chem Phys; 2014 Jul; 141(4):044715. PubMed ID: 25084945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces.
    Mu Y; Houk A; Song X
    J Phys Chem B; 2005 Apr; 109(14):6500-4. PubMed ID: 16851729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing crystal-melt interfacial free energies through homogeneous nucleation rates.
    Bai XM; Li M
    J Phys Condens Matter; 2008 Sep; 20(37):375103. PubMed ID: 21694437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculations of crystal-melt interfacial free energies by nonequilibrium work measurements.
    Mu Y; Song X
    J Chem Phys; 2006 Jan; 124(3):034712. PubMed ID: 16438605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the solid-fluid coexistence of the n - 6 Lennard-Jones system from free energy calculations.
    Sousa JM; Ferreira AL; Barroso MA
    J Chem Phys; 2012 May; 136(17):174502. PubMed ID: 22583244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial free energy of hard-sphere fluids and solids near a hard wall.
    Heni M; Löwen H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7057-65. PubMed ID: 11970645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium melting and crystallization of a model Lennard-Jones system.
    Luo SN; Strachan A; Swift DC
    J Chem Phys; 2004 Jun; 120(24):11640-9. PubMed ID: 15268198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melting line of the Lennard-Jones system, infinite size, and full potential.
    Mastny EA; de Pablo JJ
    J Chem Phys; 2007 Sep; 127(10):104504. PubMed ID: 17867758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.