These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 24007090)
1. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid. Pleitez MA; Lieblein T; Bauer A; Hertzberg O; von Lilienfeld-Toal H; Mäntele W Rev Sci Instrum; 2013 Aug; 84(8):084901. PubMed ID: 24007090 [TBL] [Abstract][Full Text] [Related]
2. Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement. Pleitez M; von Lilienfeld-Toal H; Mäntele W Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):61-5. PubMed ID: 22000639 [TBL] [Abstract][Full Text] [Related]
3. In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy. Pleitez MA; Lieblein T; Bauer A; Hertzberg O; von Lilienfeld-Toal H; Mäntele W Anal Chem; 2013 Jan; 85(2):1013-20. PubMed ID: 23214424 [TBL] [Abstract][Full Text] [Related]
4. Photothermal deflectometry enhanced by total internal reflection enables non-invasive glucose monitoring in human epidermis. Pleitez MA; Hertzberg O; Bauer A; Seeger M; Lieblein T; Lilienfeld-Toal HV; Mäntele W Analyst; 2015 Jan; 140(2):483-8. PubMed ID: 25408951 [TBL] [Abstract][Full Text] [Related]
5. Infrared reflectometry of skin: Analysis of backscattered light from different skin layers. Pleitez MA; Hertzberg O; Bauer A; Lieblein T; Glasmacher M; Tholl H; Mäntele W Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():220-227. PubMed ID: 28500960 [TBL] [Abstract][Full Text] [Related]
6. Mid-Infrared Photoacoustic Detection of Glucose in Human Skin: Towards Non-Invasive Diagnostics. Kottmann J; Rey JM; Sigrist MW Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27735878 [TBL] [Abstract][Full Text] [Related]
7. IR-spectroscopy of skin in vivo: Optimal skin sites and properties for non-invasive glucose measurement by photoacoustic and photothermal spectroscopy. Bauer A; Hertzberg O; Küderle A; Strobel D; Pleitez MA; Mäntele W J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28417584 [TBL] [Abstract][Full Text] [Related]
8. Photoacoustic spectroscopy that uses a resonant characteristic of a microphone for in vitro measurements of glucose concentration. Joo Yong Sim ; Chang-Geun Ahn ; Eunju Jeong ; Bong Kyu Kim Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4861-4864. PubMed ID: 28269359 [TBL] [Abstract][Full Text] [Related]
9. Glucose sensing in human epidermis using mid-infrared photoacoustic detection. Kottmann J; Rey JM; Luginbühl J; Reichmann E; Sigrist MW Biomed Opt Express; 2012 Apr; 3(4):667-80. PubMed ID: 22574256 [TBL] [Abstract][Full Text] [Related]
10. High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator. Peltola J; Vainio M; Hieta T; Uotila J; Sinisalo S; Metsälä M; Siltanen M; Halonen L Opt Express; 2013 Apr; 21(8):10240-50. PubMed ID: 23609733 [TBL] [Abstract][Full Text] [Related]
11. Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro. Vrančić C; Fomichova A; Gretz N; Herrmann C; Neudecker S; Pucci A; Petrich W Analyst; 2011 Mar; 136(6):1192-8. PubMed ID: 21274463 [TBL] [Abstract][Full Text] [Related]
12. Carbon isotopomers measurement using mid-IR tunable laser sources. Weidmann D; Roller CB; Oppenheimer C; Fried A; Tittel FK Isotopes Environ Health Stud; 2005 Dec; 41(4):293-302. PubMed ID: 16543185 [TBL] [Abstract][Full Text] [Related]
13. Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase. Brandstetter M; Genner A; Anic K; Lendl B Analyst; 2010 Dec; 135(12):3260-5. PubMed ID: 21046025 [TBL] [Abstract][Full Text] [Related]
14. Depth-selective photothermal IR spectroscopy of skin: potential application for non-invasive glucose measurement. Hertzberg O; Bauer A; Küderle A; Pleitez MA; Mäntele W Analyst; 2017 Jan; 142(3):495-502. PubMed ID: 28098265 [TBL] [Abstract][Full Text] [Related]
15. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products. Sim JY; Ahn CG; Jeong EJ; Kim BK Sci Rep; 2018 Jan; 8(1):1059. PubMed ID: 29348411 [TBL] [Abstract][Full Text] [Related]
17. [Study on detection methods of interstitial fluid glucose concentration based on infrared attenuated total reflection]. Sun CY; Cao YZ; Yu SL; Yu HX; Xu KX; Li DC Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2775-8. PubMed ID: 25739224 [TBL] [Abstract][Full Text] [Related]
18. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system. Pai PP; Sanki PK; Sarangi S; Banerjee S Rev Sci Instrum; 2015 Jun; 86(6):064901. PubMed ID: 26133859 [TBL] [Abstract][Full Text] [Related]