These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24007094)

  • 1. Measurement of back-bombardment temperature rise in microwave thermionic electron guns.
    Kowalczyk JM; Hadmack MR; Madey JM
    Rev Sci Instrum; 2013 Aug; 84(8):084905. PubMed ID: 24007094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermionic microwave gun for terahertz and synchrotron light sources.
    Kutsaev SV; Agustsson R; Berry R; Borland M; Chao D; Chimalpopoca O; Gavryushkin D; Gusarova M; Hartzell J; Meyer D; Nassiri A; Smirnov AY; Smith T; Sun Y; Verma A; Waldschmidt G; Zholents A
    Rev Sci Instrum; 2020 Apr; 91(4):044701. PubMed ID: 32357711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.
    Vodopyanov AV; Golubev SV; Khizhnyak VI; Mansfeld DA; Nikolaev AG; Oks EM; Savkin KP; Vizir AV; Yushkov GY
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02B304. PubMed ID: 18315170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new evaluation method of electron optical performance of high beam current probe forming systems.
    Fujita S; Shimoyama H
    J Electron Microsc (Tokyo); 2005 Oct; 54(5):413-27. PubMed ID: 16199441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Potential of a Thermionic LaB6 Virtual Source Mode Electron Gun for a High Angular Current Density and a Narrow Energy Distribution.
    Lee HR; Hwang J; Ogawa T; Kim J; Lee JW; Jung H; Yun DJ; Lee S; Park IY
    Microsc Microanal; 2023 Dec; 29(6):2004-2013. PubMed ID: 37855685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of magnetically immersed electron guns with non-adiabatic fields.
    Pikin A; Alessi JG; Beebe EN; Raparia D; Ritter J
    Rev Sci Instrum; 2016 Nov; 87(11):113303. PubMed ID: 27910580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of cathode trajectory characterization by canonical mapping transformation.
    Fujita S; Shimoyama H
    J Electron Microsc (Tokyo); 2005 Aug; 54(4):331-43. PubMed ID: 16143701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Communication: Effects of thermionic-gun parameters on operating modes in ultrafast electron microscopy.
    Kieft E; Schliep KB; Suri PK; Flannigan DJ
    Struct Dyn; 2015 Sep; 2(5):051101. PubMed ID: 26798820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser.
    Hu T; Pei Y; Qin B; Tan P; Chen Q; Yang L; Li J
    Rev Sci Instrum; 2014 Oct; 85(10):103302. PubMed ID: 25362386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beam brightness and its reduction in a 1.2-MV cold field-emission transmission electron microscope.
    Kawasaki T; Akashi T; Kasuya K; Shinada H
    Ultramicroscopy; 2019 Jul; 202():107-113. PubMed ID: 31005817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsed blowdown-electron gun facility for low-temperature and high-pressure supersonic flow electronic transition lasers.
    Forestier B; Fontaine B
    Rev Sci Instrum; 1979 Apr; 50(4):421. PubMed ID: 18699524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast fiber-optic multi-wavelength pyrometer.
    Fu T; Tan P; Pang C; Zhao H; Shen Y
    Rev Sci Instrum; 2011 Jun; 82(6):064902. PubMed ID: 21721719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of thermionic emission current with a laser-heated system.
    Dominguez-Andrade H; Croot A; Wan G; Smith JA; Fox NA
    Rev Sci Instrum; 2019 Apr; 90(4):045110. PubMed ID: 31043037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear transmission line based electron beam driver.
    French DM; Hoff BW; Tang W; Heidger S; Allen-Flowers J; Shiffler D
    Rev Sci Instrum; 2012 Dec; 83(12):123302. PubMed ID: 23277977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of curved cathode guns by the generalized trajectory method: upgrade of G-optk programme for applications to non-planar objects.
    Fujita S; Takebe M; Ohye T
    J Electron Microsc (Tokyo); 2010; 59(5):351-8. PubMed ID: 20522450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SAR versus S(inc): What is the appropriate RF exposure metric in the range 1-10 GHz? Part I: Using planar body models.
    Anderson V; Croft R; McIntosh RL
    Bioelectromagnetics; 2010 Sep; 31(6):454-66. PubMed ID: 20564170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced angular current intensity from Schottky emitters.
    Fujita S; Wells TR; Ushio W; Sato H; El-Gomati MM
    J Microsc; 2010 Sep; 239(3):215-22. PubMed ID: 20701659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of flux from a saddle field fast-atom bombardment gun.
    Boggess B; Cook KD
    J Am Soc Mass Spectrom; 1994 Feb; 5(2):100-5. PubMed ID: 24222520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brightness evaluation of pulsed electron gun using negative electron affinity photocathode developed for time-resolved measurement using scanning electron microscope.
    Morishita H; Ohshima T; Otsuga K; Kuwahara M; Agemura T; Ose Y
    Ultramicroscopy; 2021 Nov; 230():113386. PubMed ID: 34534748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the electron beam-induced specimen heating and the emitted X-rays spatial resolution by Kossel microdiffraction in a scanning electron microscope.
    Bouscaud D; Pesci R; Berveiller S; Patoor E
    Ultramicroscopy; 2012 Apr; 115():115-9. PubMed ID: 22444249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.