These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24007097)

  • 1. A novel flexure-based microgripper with double amplification mechanisms for micro/nano manipulation.
    Sun X; Chen W; Tian Y; Fatikow S; Zhou R; Zhang J; Mikczinski M
    Rev Sci Instrum; 2013 Aug; 84(8):085002. PubMed ID: 24007097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation.
    Mohd Zubir MN; Shirinzadeh B; Tian Y
    Rev Sci Instrum; 2009 Jun; 80(6):065106. PubMed ID: 19566225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a Compliant Mechanism Based Four-Stage Amplification Piezoelectric-Driven Asymmetric Microgripper.
    Chen X; Deng Z; Hu S; Gao J; Gao X
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31878252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Analysis of a CSFH-Based Microgripper: Analytical Modeling and Simulation.
    Yallew TS; Belfiore NP; Bagolini A; Pantano MF
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and analysis of a microgripper for trans-scale clamping based on a compliant multistable mechanism.
    Hu L; Wang H; Wang G; Liang W
    Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38526441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging.
    Liang C; Wang F; Tian Y; Zhao X; Zhang H; Cui L; Zhang D; Ferreira P
    Rev Sci Instrum; 2015 Apr; 86(4):045106. PubMed ID: 25933896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolithically integrated two-axis microgripper for polarization maintaining in optical fiber assembly.
    Zhang J; Lu K; Chen W; Jiang J; Chen W
    Rev Sci Instrum; 2015 Feb; 86(2):025105. PubMed ID: 25725886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel microgripper hybrid driven by a piezoelectric stack actuator and piezoelectric cantilever actuators.
    Chen W; Zhang X; Fatikow S
    Rev Sci Instrum; 2016 Nov; 87(11):115003. PubMed ID: 27910461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Analysis of a Microgripper with Three-Stage Amplification Mechanism for Micromanipulation.
    Hong Y; Wu Y; Jin S; Liu D; Chi B
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a novel 5-DOF flexure-based compound alignment stage for Roll-to-Roll Printed Electronics.
    Chen W; Yang S; Liu J; Chen W; Jin Y
    Rev Sci Instrum; 2017 Feb; 88(2):025002. PubMed ID: 28249512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Validation of a Single-SOI-Wafer 4-DOF Crawling Microgripper.
    Verotti M; Bagolini A; Bellutti P; Belfiore NP
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31195703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel driving principle by means of the parasitic motion of the microgripper and its preliminary application in the design of the linear actuator.
    Huang H; Zhao H; Yang Z; Mi J; Fan Z; Wan S; Shi C; Ma Z
    Rev Sci Instrum; 2012 May; 83(5):055002. PubMed ID: 22667643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a Novel MEMS Microgripper with Rotatory Electrostatic Comb-Drive Actuators for Biomedical Applications.
    Velosa-Moncada LA; Aguilera-Cortés LA; González-Palacios MA; Raskin JP; Herrera-May AL
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29789474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Control of a Piezoelectric-Driven Microgripper Perceiving Displacement and Gripping Force.
    Zhao Y; Huang X; Liu Y; Wang G; Hong K
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Analysis of a Light-Operated Microgripper Using an Opto-Electrostatic Repulsive Combined Actuator.
    Huang J; Jiang C; Li G; Lu Q; Chen H
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, modeling, and testing of a one degree of freedom manipulator with three-stage amplification mechanism.
    Guo ZY; Zhang WC; Tian YL; Zhang ZQ; Cao YR; Lu XC; Zhang TG
    Rev Sci Instrum; 2022 Dec; 93(12):123705. PubMed ID: 36586917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Microgripper with a Post-Assembly Self-Locking Mechanism.
    Yuan G; Yuan W; Hao Y; Li X; Chang H
    Sensors (Basel); 2015 Aug; 15(8):20140-51. PubMed ID: 26287208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft Polymer-Actuated Compliant Microgripper with Adaptive Vibration-Controlled Grasp and Release.
    Youn JH; Koh JS; Kyung KU
    Soft Robot; 2024 Aug; 11(4):585-595. PubMed ID: 38557238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A parallelogram-based compliant remote-center-of-motion stage for active parallel alignment.
    Qu J; Chen W; Zhang J
    Rev Sci Instrum; 2014 Sep; 85(9):095112. PubMed ID: 25273777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Hybrid Position/Force Control of a Dual-Drive Macro-Fiber-Composite Microgripper.
    Zhang J; Yang Y; Lou J; Wei Y; Fu L
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.