These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24007100)

  • 21. Simultaneous Surface Plasmon Resonance/Fluorescence Spectroelectrochemical in Situ Monitoring of Dynamic Changes on Functional Interfaces: A Study of the Electrochemical Proximity Assay Model System.
    Zhou L; Arugula MA; Chin BA; Simonian AL
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41763-41772. PubMed ID: 30379060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneously amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene-streptavidin conjugates.
    Liu J; Tian S; Tiefenauer L; Nielsen PE; Knoll W
    Anal Chem; 2005 May; 77(9):2756-61. PubMed ID: 15859590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of varying electric potential on surface-plasmon resonance sensing.
    Lioubimov V; Kolomenskii A; Mershin A; Nanopoulos DV; Schuessler HA
    Appl Opt; 2004 Jun; 43(17):3426-32. PubMed ID: 15219023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-free analysis of biomolecular interactions using SPR imaging.
    Kodoyianni V
    Biotechniques; 2011 Jan; 50(1):32-40. PubMed ID: 21231920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative monitoring of two simultaneously binding species using Label-Enhanced surface plasmon resonance.
    Eng L; Garcia BL; Geisbrecht BV; Hanning A
    Biochem Biophys Res Commun; 2018 Feb; 497(1):133-138. PubMed ID: 29427666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy.
    Chabot V; Miron Y; Charette PG; Grandbois M
    Biosens Bioelectron; 2013 Dec; 50():125-31. PubMed ID: 23845690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Triggering blue-red transition response in polydiacetylene vesicles: an electrochemical surface plasmon resonance method.
    Kew SJ; Hall EA
    Analyst; 2007 Aug; 132(8):801-10. PubMed ID: 17646880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of intermediate dielectric films on multilayer surface plasmon resonance behavior.
    Yao M; Tan OK; Tjin SC; Wolfe JC
    Acta Biomater; 2008 Nov; 4(6):2016-27. PubMed ID: 18657495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New approach to writing and simultaneous reading of micropatterns: combining surface plasmon resonance imaging with scanning electrochemical microscopy (SECM).
    Szunerits S; Knorr N; Calemczuk R; Livache T
    Langmuir; 2004 Oct; 20(21):9236-41. PubMed ID: 15461512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ electrochemical-transmission surface plasmon resonance spectroscopy for poly(pyrrole-3-carboxylic acid) thin-film-based biosensor applications.
    Janmanee R; Baba A; Phanichphant S; Sriwichai S; Shinbo K; Kato K; Kaneko F
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4270-5. PubMed ID: 22856530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo optical neural recording using fiber-based surface plasmon resonance.
    Kim SA; Kim SJ; Moon H; Jun SB
    Opt Lett; 2012 Feb; 37(4):614-6. PubMed ID: 22344124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Au nanostructured surfaces for electrochemical and localized surface plasmon resonance-based monitoring of α-synuclein-small molecule interactions.
    Cheng XR; Wallace GQ; Lagugné-Labarthet F; Kerman K
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4081-8. PubMed ID: 25622115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fiber-optic surface plasmon resonance for vapor phase analyses.
    Kim YC; Banerji S; Masson JF; Peng W; Booksh KS
    Analyst; 2005 Jun; 130(6):838-43. PubMed ID: 15912230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A surface plasmon resonance probe without optical fibers as a portable sensing device.
    Akimoto T; Wada S; Karube I
    Anal Chim Acta; 2008 Mar; 610(1):119-24. PubMed ID: 18267148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical plasmonic sensors.
    Dahlin AB; Dielacher B; Rajendran P; Sugihara K; Sannomiya T; Zenobi-Wong M; Vörös J
    Anal Bioanal Chem; 2012 Feb; 402(5):1773-84. PubMed ID: 21947010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical and surface plasmon resonance characterization of beta-cyclodextrin-based self-assembled monolayers and evaluation of their inclusion complexes with glucocorticoids.
    Frasconi M; Mazzei F
    Nanotechnology; 2009 Jul; 20(28):285502. PubMed ID: 19550013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Data Processing of SPR Curve Data to Maximize the Extraction of Changes in Electrochemical SPR Measurements.
    Inoue S; Fukada K; Hayashi K; Seyama M
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical, electrical and surface plasmon resonance methods for detecting telomerase activity.
    Sharon E; Freeman R; Riskin M; Gil N; Tzfati Y; Willner I
    Anal Chem; 2010 Oct; 82(20):8390-7. PubMed ID: 20849086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stable and sensitive silver surface plasmon resonance imaging sensor using trilayered metallic structures.
    Wang Z; Cheng Z; Singh V; Zheng Z; Wang Y; Li S; Song L; Zhu J
    Anal Chem; 2014 Feb; 86(3):1430-6. PubMed ID: 24372308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of antibody production of individual hybridoma cells by surface plasmon resonance imaging.
    Stojanović I; van der Velden TJ; Mulder HW; Schasfoort RB; Terstappen LW
    Anal Biochem; 2015 Sep; 485():112-8. PubMed ID: 26095397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.