BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24007123)

  • 1. Note: simultaneous measurements of magnetization and electrical transport signal by a reconstructed superconducting quantum interference device magnetometer.
    Wang HL; Yu XZ; Wang SL; Chen L; Zhao JH
    Rev Sci Instrum; 2013 Aug; 84(8):086103. PubMed ID: 24007123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer.
    Giriat G; Wang W; Attfield JP; Huxley AD; Kamenev KV
    Rev Sci Instrum; 2010 Jul; 81(7):073905. PubMed ID: 20687740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature ceramic-anvil high-pressure cell for magnetic measurements in a commercial superconducting quantum interference device magnetometer.
    Tateiwa N; Haga Y; Fisk Z; Ōnuki Y
    Rev Sci Instrum; 2011 May; 82(5):053906. PubMed ID: 21639517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniature anvil cell for high-pressure measurements in a commercial superconducting quantum interference device magnetometer.
    Alireza PL; Lonzarich GG
    Rev Sci Instrum; 2009 Feb; 80(2):023906. PubMed ID: 19256661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonmagnetic high pressure cell for magnetic remanence measurements up to 1.5 GPa in a superconducting quantum interference device magnetometer.
    Sadykov RA; Bezaeva NS; Kharkovskiy AI; Rochette P; Gattacceca J; Trukhin VI
    Rev Sci Instrum; 2008 Nov; 79(11):115102. PubMed ID: 19045908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.
    Takeda K; Mori H; Yamaguchi A; Ishimoto H; Nakamura T; Kuriki S; Hozumi T; Ohkoshi S
    Rev Sci Instrum; 2008 Mar; 79(3):033909. PubMed ID: 18377027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disposable sample holder for high temperature measurements in MPMS superconducting quantum interference device magnetometers.
    Sesé J; Bartolomé J; Rillo C
    Rev Sci Instrum; 2007 Apr; 78(4):046101. PubMed ID: 17477692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The measurement of small magnetic signals from magnetic nanoparticles attached to the cell surface and surrounding living cells using a general-purpose SQUID magnetometer.
    Hashimoto S; Oda T; Yamada K; Takagi M; Enomoto T; Ohkohchi N; Takagi T; Kanamori T; Ikeda H; Yanagihara H; Kita E; Tasaki A
    Phys Med Biol; 2009 Apr; 54(8):2571-83. PubMed ID: 19349659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical cell for in situ electrodeposition of magnetic thin films in a superconducting quantum interference device magnetometer.
    Topolovec S; Krenn H; Würschum R
    Rev Sci Instrum; 2015 Jun; 86(6):063903. PubMed ID: 26133846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin/orbital and magnetic quantum number selective magnetization measurements for CoFeB/MgO multilayer films.
    Yamazoe M; Kato T; Suzuki K; Adachi M; Shibayama A; Hoshi K; Itou M; Tsuji N; Sakurai Y; Sakurai H
    J Phys Condens Matter; 2016 Nov; 28(43):436001. PubMed ID: 27602698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superconducting quantum interference device setup for magnetoelectric measurements.
    Borisov P; Hochstrat A; Shvartsman VV; Kleemann W
    Rev Sci Instrum; 2007 Oct; 78(10):106105. PubMed ID: 17979461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tiny adiabatic-demagnetization refrigerator for a commercial superconducting quantum interference device magnetometer.
    Sato TJ; Okuyama D; Kimura H
    Rev Sci Instrum; 2016 Dec; 87(12):123905. PubMed ID: 28040960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles.
    Zhu Z; Gao D; Dong C; Yang G; Zhang J; Zhang J; Shi Z; Gao H; Luo H; Xue D
    Phys Chem Chem Phys; 2012 Mar; 14(11):3859-63. PubMed ID: 22327377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Note: a sample holder design for sensitive magnetic measurements at high temperatures in a magnetic properties measurement system.
    Arauzo A; Guerrero E; Urtizberea A; Stankiewicz J; Rillo C
    Rev Sci Instrum; 2012 Jun; 83(6):066106. PubMed ID: 22755672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superconductive quantum interference magnetometer with high sensitivity achieved by an induced resonance.
    Vettoliere A; Granata C
    Rev Sci Instrum; 2014 Aug; 85(8):085006. PubMed ID: 25173305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note: Improved sensitivity of magnetic measurements under high pressure in miniature ceramic anvil cell for a commercial SQUID magnetometer.
    Tateiwa N; Haga Y; Matsuda TD; Fisk Z; Ikeda S; Kobayashi H
    Rev Sci Instrum; 2013 Apr; 84(4):046105. PubMed ID: 23635239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of high-pressure and high-field ESR system using SQUID magnetometer.
    Sakurai T; Fujimoto K; Goto R; Okubo S; Ohta H; Uwatoko Y
    J Magn Reson; 2012 Oct; 223():41-5. PubMed ID: 22967886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic characterization of Daphnia resting eggs.
    Sakata M; Kawasaki T; Shibue T; Takada A; Yoshimura H; Namiki H
    Biochem Biophys Res Commun; 2006 Dec; 351(2):566-70. PubMed ID: 17070770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic measurements at pressures above 10 GPa in a miniature ceramic anvil cell for a superconducting quantum interference device magnetometer.
    Tateiwa N; Haga Y; Matsuda TD; Fisk Z
    Rev Sci Instrum; 2012 May; 83(5):053906. PubMed ID: 22667632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonmagnetic indenter-type high-pressure cell for magnetic measurements.
    Kobayashi TC; Hidaka H; Kotegawa H; Fujiwara K; Eremets MI
    Rev Sci Instrum; 2007 Feb; 78(2):023909. PubMed ID: 17578125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.