These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
458 related articles for article (PubMed ID: 24007170)
1. Measurement of absorbed dose-to-water for an HDR (192)Ir source with ionization chambers in a sandwich setup. Araki F; Kouno T; Ohno T; Kakei K; Yoshiyama F; Kawamura S Med Phys; 2013 Sep; 40(9):092101. PubMed ID: 24007170 [TBL] [Abstract][Full Text] [Related]
2. A radiation quality correction factor k for well-type ionization chambers for the measurement of the reference air kerma rate of (60)Co HDR brachytherapy sources. Schüller A; Meier M; Selbach HJ; Ankerhold U Med Phys; 2015 Jul; 42(7):4285-94. PubMed ID: 26133626 [TBL] [Abstract][Full Text] [Related]
3. [Evaluation of Stability and Reliability of the Measurement of Absorbed Dose-to-water for an HDR Oku Y; Motomura K; Iwamoto R; Toyota M; Saigo Y Nihon Hoshasen Gijutsu Gakkai Zasshi; 2020; 76(2):185-192. PubMed ID: 32074527 [TBL] [Abstract][Full Text] [Related]
4. Suitability of microDiamond detectors for the determination of absorbed dose to water around high-dose-rate Kaveckyte V; Malusek A; Benmakhlouf H; Alm Carlsson G; Carlsson Tedgren Å Med Phys; 2018 Jan; 45(1):429-437. PubMed ID: 29171060 [TBL] [Abstract][Full Text] [Related]
5. A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system. Austerlitz C; Campos CA Med Phys; 2013 Nov; 40(11):112103. PubMed ID: 24320456 [TBL] [Abstract][Full Text] [Related]
6. Correction factors for source strength determination in HDR brachytherapy using the in-phantom method. Ubrich F; Wulff J; Engenhart-Cabillic R; Zink K Z Med Phys; 2014 May; 24(2):138-52. PubMed ID: 24021956 [TBL] [Abstract][Full Text] [Related]
7. Direct measurement of absorbed dose to water in HDR 192Ir brachytherapy: water calorimetry, ionization chamber, Gafchromic film, and TG-43. Sarfehnia A; Kawrakow I; Seuntjens J Med Phys; 2010 Apr; 37(4):1924-32. PubMed ID: 20443514 [TBL] [Abstract][Full Text] [Related]
8. Air-kerma strength determination of an HDR Smith BR; Micka JA; Aima M; DeWerd LA; Culberson WS Med Phys; 2017 Jan; 44(1):311-320. PubMed ID: 28102953 [TBL] [Abstract][Full Text] [Related]
9. The Fricke dosimeter as an absorbed dose to water primary standard for Ir-192 brachytherapy. El Gamal I; Cojocaru C; Mainegra-Hing E; McEwen M Phys Med Biol; 2015 Jun; 60(11):4481-95. PubMed ID: 25988983 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types. Muir BR; Rogers DW Med Phys; 2014 Nov; 41(11):111701. PubMed ID: 25370615 [TBL] [Abstract][Full Text] [Related]
11. Determination of absorbed dose in water at the reference point d(r0, theta0) for an 192Ir HDR brachytherapy source using a Fricke system. Austerlitz C; Mota HC; Sempau J; Benhabib SM; Campos D; Allison R; DeAlmeida CE; Zhu D; Sibata CH Med Phys; 2008 Dec; 35(12):5360-5. PubMed ID: 19175095 [TBL] [Abstract][Full Text] [Related]
12. Investigations on the beam quality correction factor for ionization chambers in high-energy brachytherapy dosimetry. Failing T; Hensley FW; Keil B; Zink K Phys Med Biol; 2024 Jul; 69(16):. PubMed ID: 39009012 [No Abstract] [Full Text] [Related]
13. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry. Candela-Juan C; Vijande J; García-Martínez T; Niatsetski Y; Nauta G; Schuurman J; Ouhib Z; Ballester F; Perez-Calatayud J Med Phys; 2015 Aug; 42(8):4954-64. PubMed ID: 26233221 [TBL] [Abstract][Full Text] [Related]
14. Energy dependence of a radiophotoluminescent glass dosimeter for HDR Hashimoto S; Nakajima Y; Kadoya N; Abe K; Karasawa K Med Phys; 2019 Feb; 46(2):964-972. PubMed ID: 30506576 [TBL] [Abstract][Full Text] [Related]
15. The IPEM code of practice for determination of the reference air kerma rate for HDR (192)Ir brachytherapy sources based on the NPL air kerma standard. Bidmead AM; Sander T; Locks SM; Lee CD; Aird EG; Nutbrown RF; Flynn A; Phys Med Biol; 2010 Jun; 55(11):3145-59. PubMed ID: 20479510 [TBL] [Abstract][Full Text] [Related]
16. A generic high-dose rate (192)Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism. Ballester F; Carlsson Tedgren Å; Granero D; Haworth A; Mourtada F; Fonseca GP; Zourari K; Papagiannis P; Rivard MJ; Siebert FA; Sloboda RS; Smith RL; Thomson RM; Verhaegen F; Vijande J; Ma Y; Beaulieu L Med Phys; 2015 Jun; 42(6):3048-61. PubMed ID: 26127057 [TBL] [Abstract][Full Text] [Related]
17. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source. Lucas PA; Aubineau-Lanièce I; Lourenço V; Vermesse D; Cutarella D Med Phys; 2014 Jan; 41(1):011711. PubMed ID: 24387503 [TBL] [Abstract][Full Text] [Related]
19. Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions. Candela-Juan C; Niatsetski Y; van der Laarse R; Granero D; Ballester F; Perez-Calatayud J; Vijande J Med Phys; 2016 Apr; 43(4):1639. PubMed ID: 27036563 [TBL] [Abstract][Full Text] [Related]
20. In vivo dosimetry in the urethra using alanine/ESR during (192)Ir HDR brachytherapy of prostate cancer--a phantom study. Anton M; Wagner D; Selbach HJ; Hackel T; Hermann RM; Hess CF; Vorwerk H Phys Med Biol; 2009 May; 54(9):2915-31. PubMed ID: 19384000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]