These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24007324)

  • 21. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.
    Zhu X; Zhu Y; Murali S; Stoller MD; Ruoff RS
    ACS Nano; 2011 Apr; 5(4):3333-8. PubMed ID: 21443243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries.
    Shen X; Mu D; Chen S; Wu B; Wu F
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries.
    Lai H; Li J; Chen Z; Huang Z
    ACS Appl Mater Interfaces; 2012 May; 4(5):2325-8. PubMed ID: 22545767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries.
    Zheng F; He M; Yang Y; Chen Q
    Nanoscale; 2015 Feb; 7(8):3410-7. PubMed ID: 25631451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries.
    Li X; Xiong S; Li J; Liang X; Wang J; Bai J; Qian Y
    Chemistry; 2013 Aug; 19(34):11310-9. PubMed ID: 23843271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supercritical carbon dioxide assisted deposition of Fe(3)O(4) nanoparticles on hierarchical porous carbon and their lithium-storage performance.
    Wang L; Zhuo L; Zhang C; Zhao F
    Chemistry; 2014 Apr; 20(15):4308-15. PubMed ID: 24590487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries.
    Chen T; Pan L; Loh TA; Chua DH; Yao Y; Chen Q; Li D; Qin W; Sun Z
    Dalton Trans; 2014 Oct; 43(40):14931-5. PubMed ID: 24934560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries.
    Zhao Y; Li J; Ding Y; Guan L
    Chem Commun (Camb); 2011 Jul; 47(26):7416-8. PubMed ID: 21625675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous Fe3O4-NCs-in-Carbon Nanofoils as High-Rate and High-Capacity Anode Materials for Lithium-Ion Batteries from Na-Citrate-Mediated Growth of Super-Thin Fe-Ethylene Glycolate Nanosheets.
    Ding C; Zeng Y; Cao L; Zhao L; Meng Q
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7977-90. PubMed ID: 26930503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bimetallic metal-organic framework derived Co
    Zhong M; Yang DH; Kong LJ; Shuang W; Zhang YH; Bu XH
    Dalton Trans; 2017 Nov; 46(45):15947-15953. PubMed ID: 29119170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High electrochemical performance of monodisperse NiCo₂O₂ mesoporous microspheres as an anode material for Li-ion batteries.
    Li J; Xiong S; Liu Y; Ju Z; Qian Y
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):981-8. PubMed ID: 23323836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of graphene-encapsulated porous carbon-metal oxide composites as anode materials for lithium-ion batteries.
    Tao S; Yue W; Zhong M; Chen Z; Ren Y
    ACS Appl Mater Interfaces; 2014 May; 6(9):6332-9. PubMed ID: 24766556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CNT@Fe3O4@C coaxial nanocables: one-pot, additive-free synthesis and remarkable lithium storage behavior.
    Cheng J; Wang B; Park CM; Wu Y; Huang H; Nie F
    Chemistry; 2013 Jul; 19(30):9866-74. PubMed ID: 23852958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sandwich-Structured Graphene-Fe3O4@Carbon Nanocomposites for High-Performance Lithium-Ion Batteries.
    Zhao L; Gao M; Yue W; Jiang Y; Wang Y; Ren Y; Hu F
    ACS Appl Mater Interfaces; 2015 May; 7(18):9709-15. PubMed ID: 25886399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries.
    Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL
    Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material.
    He C; Wu S; Zhao N; Shi C; Liu E; Li J
    ACS Nano; 2013 May; 7(5):4459-69. PubMed ID: 23614734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization.
    Yuan FW; Yang HJ; Tuan HY
    ACS Nano; 2012 Nov; 6(11):9932-42. PubMed ID: 23043347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries.
    Liu Y; Zhang N; Yu C; Jiao L; Chen J
    Nano Lett; 2016 May; 16(5):3321-8. PubMed ID: 27050390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal dicarboxylates: new anode materials for lithium-ion batteries with good cycling performance.
    Fei H; Liu X; Li Z; Feng W
    Dalton Trans; 2015 Jun; 44(21):9909-14. PubMed ID: 25940917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-step thermolysis synthesis of two-dimensional ultrafine Fe3O4 particles/carbon nanonetworks for high-performance lithium-ion batteries.
    Zhang W; Li X; Liang J; Tang K; Zhu Y; Qian Y
    Nanoscale; 2016 Feb; 8(8):4733-41. PubMed ID: 26859122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.