These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 24007457)

  • 1. The different interactions of lysine and arginine side chains with lipid membranes.
    Li L; Vorobyov I; Allen TW
    J Phys Chem B; 2013 Oct; 117(40):11906-20. PubMed ID: 24007457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.
    Sun D; Forsman J; Woodward CE
    J Chem Theory Comput; 2015 Apr; 11(4):1775-91. PubMed ID: 26574387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of anionic lipids in charged protein interactions with membranes.
    Vorobyov I; Allen TW
    Biochim Biophys Acta; 2011 Jun; 1808(6):1673-83. PubMed ID: 21073855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of membrane thickness in charged protein-lipid interactions.
    Li LB; Vorobyov I; Allen TW
    Biochim Biophys Acta; 2012 Feb; 1818(2):135-45. PubMed ID: 22063722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of mean force and pKa profile calculation for a lipid membrane-exposed arginine side chain.
    Li L; Vorobyov I; Allen TW
    J Phys Chem B; 2008 Aug; 112(32):9574-87. PubMed ID: 18636765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H; Vreede J; Woutersen S
    Biophys J; 2016 Jun; 110(11):2328-2341. PubMed ID: 27276251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the thermodynamic stability of a charged arginine side chain in a transmembrane helix.
    Dorairaj S; Allen TW
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):4943-8. PubMed ID: 17360368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association.
    Rice A; Wereszczynski J
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1941-1950. PubMed ID: 28583830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the cationic side chains of the antimicrobial peptide tritrpticin: hydrogen bonding properties govern its membrane-disruptive activities.
    Nguyen LT; de Boer L; Zaat SA; Vogel HJ
    Biochim Biophys Acta; 2011 Sep; 1808(9):2297-303. PubMed ID: 21641334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Ionic Interactions at Protein-Nucleic Acid Interfaces.
    Yu B; Pettitt BM; Iwahara J
    Acc Chem Res; 2020 Sep; 53(9):1802-1810. PubMed ID: 32845610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human neutrophil peptide 1 variants bearing arginine modified cationic side chains: effects on membrane partitioning.
    Bonucci A; Balducci E; Martinelli M; Pogni R
    Biophys Chem; 2014 Jun; 190-191():32-40. PubMed ID: 24820901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion pair formation of phosphorylated amino acids and lysine and arginine side chains: a theoretical study.
    Mavri J; Vogel HJ
    Proteins; 1996 Apr; 24(4):495-501. PubMed ID: 9162949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR Methods for Characterizing the Basic Side Chains of Proteins: Electrostatic Interactions, Hydrogen Bonds, and Conformational Dynamics.
    Nguyen D; Chen C; Pettitt BM; Iwahara J
    Methods Enzymol; 2019; 615():285-332. PubMed ID: 30638532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is arginine charged in a membrane?
    Li L; Vorobyov I; MacKerell AD; Allen TW
    Biophys J; 2008 Jan; 94(2):L11-3. PubMed ID: 17981901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why do arginine and lysine organize lipids differently? Insights from coarse-grained and atomistic simulations.
    Wu Z; Cui Q; Yethiraj A
    J Phys Chem B; 2013 Oct; 117(40):12145-56. PubMed ID: 24024591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from (13)C, (31)P, and (19)F solid-state NMR.
    Su Y; Doherty T; Waring AJ; Ruchala P; Hong M
    Biochemistry; 2009 Jun; 48(21):4587-95. PubMed ID: 19364134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate- and guanidinium-containing residues in a β-hairpin.
    Kuo HT; Liu SL; Chiu WC; Fang CJ; Chang HC; Wang WR; Yang PA; Li JH; Huang SJ; Huang SL; Cheng RP
    Amino Acids; 2015 May; 47(5):885-98. PubMed ID: 25646959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between ionizable amino acid side chains at a lipid bilayer-water interface.
    Yuzlenko O; Lazaridis T
    J Phys Chem B; 2011 Nov; 115(46):13674-84. PubMed ID: 21985663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of two basic residues (Lys-17 and Arg-39) of mouse lung carbonyl reductase in NADP(H)-binding and fatty acid activation: site-directed mutagenesis and kinetic analyses.
    Nakanishi M; Kakumoto M; Matsuura K; Deyashiki Y; Tanaka N; Nonaka T; Mitsui Y; Hara A
    J Biochem; 1996 Aug; 120(2):257-63. PubMed ID: 8889808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.