BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24007600)

  • 21. Prediction of regulatory long intergenic non-coding RNAs acting in trans through base-pairing interactions.
    Deforges J; Reis RS; Jacquet P; Vuarambon DJ; Poirier Y
    BMC Genomics; 2019 Jul; 20(1):601. PubMed ID: 31331261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis.
    Wang H; Chung PJ; Liu J; Jang IC; Kean MJ; Xu J; Chua NH
    Genome Res; 2014 Mar; 24(3):444-53. PubMed ID: 24402519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain-Enriched Coding and Long Non-coding RNA Genes Are Overrepresented in Recurrent Neurodevelopmental Disorder CNVs.
    Alinejad-Rokny H; Heng JIT; Forrest ARR
    Cell Rep; 2020 Oct; 33(4):108307. PubMed ID: 33113368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific expression of long noncoding RNAs in the mouse brain.
    Mercer TR; Dinger ME; Sunkin SM; Mehler MF; Mattick JS
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):716-21. PubMed ID: 18184812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment.
    Hicks SD; Ignacio C; Gentile K; Middleton FA
    BMC Pediatr; 2016 Apr; 16():52. PubMed ID: 27105825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide analysis of rice cis-natural antisense transcription under cadmium exposure using strand-specific RNA-Seq.
    Oono Y; Yazawa T; Kanamori H; Sasaki H; Mori S; Matsumoto T
    BMC Genomics; 2017 Oct; 18(1):761. PubMed ID: 28985711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural antisense transcripts are significantly involved in regulation of drought stress in maize.
    Xu J; Wang Q; Freeling M; Zhang X; Xu Y; Mao Y; Tang X; Wu F; Lan H; Cao M; Rong T; Lisch D; Lu Y
    Nucleic Acids Res; 2017 May; 45(9):5126-5141. PubMed ID: 28175341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of novel endogenous antisense transcripts by DNA microarray analysis targeting complementary strand of annotated genes.
    Numata K; Osada Y; Okada Y; Saito R; Hiraiwa N; Nakaoka H; Yamamoto N; Watanabe K; Okubo K; Kohama C; Kanai A; Abe K; Kiyosawa H
    BMC Genomics; 2009 Aug; 10():392. PubMed ID: 19698135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and Functional Analysis of Long Non-coding RNAs in Autism Spectrum Disorders.
    Tong Z; Zhou Y; Wang J
    Front Genet; 2020; 11():849. PubMed ID: 33193567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The genetics of autism.
    Muhle R; Trentacoste SV; Rapin I
    Pediatrics; 2004 May; 113(5):e472-86. PubMed ID: 15121991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HMGA2 Antisense Long Non-coding RNAs as New Players in the Regulation of HMGA2 Expression and Pancreatic Cancer Promotion.
    Ros G; Pegoraro S; De Angelis P; Sgarra R; Zucchelli S; Gustincich S; Manfioletti G
    Front Oncol; 2019; 9():1526. PubMed ID: 32010621
    [No Abstract]   [Full Text] [Related]  

  • 32. Prediction and prioritization of autism-associated long non-coding RNAs using gene expression and sequence features.
    Wang J; Wang L
    BMC Bioinformatics; 2020 Nov; 21(1):505. PubMed ID: 33160303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.
    Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium
    Mol Autism; 2017; 8():21. PubMed ID: 28540026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases.
    Wu P; Zuo X; Deng H; Liu X; Liu L; Ji A
    Brain Res Bull; 2013 Aug; 97():69-80. PubMed ID: 23756188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression profiling of antisense transcripts on DNA arrays.
    Werner A; Schmutzler G; Carlile M; Miles CG; Peters H
    Physiol Genomics; 2007 Feb; 28(3):294-300. PubMed ID: 17105753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq).
    Babski J; Haas KA; Näther-Schindler D; Pfeiffer F; Förstner KU; Hammelmann M; Hilker R; Becker A; Sharma CM; Marchfelder A; Soppa J
    BMC Genomics; 2016 Aug; 17(1):629. PubMed ID: 27519343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue-specific transcriptomic analysis uncovers potential roles of natural antisense transcripts in
    Jin J; Ohama N; He X; Wu HW; Chua NH
    Front Plant Sci; 2022; 13():997967. PubMed ID: 36160979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders.
    Prem S; Millonig JH; DiCicco-Bloom E
    Adv Neurobiol; 2020; 25():109-153. PubMed ID: 32578146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array.
    Coram TE; Settles ML; Chen X
    BMC Genomics; 2009 May; 10():253. PubMed ID: 19480707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction and identification of natural antisense transcripts and their small RNAs in soybean (Glycine max).
    Zheng H; Qiyan J; Zhiyong N; Hui Z
    BMC Genomics; 2013 Apr; 14():280. PubMed ID: 23617936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.