These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 2400776)

  • 1. Resonance energy transfer between the active sites of creatine kinase from rabbit brain.
    Grossman SH
    Biochim Biophys Acta; 1990 Sep; 1040(2):276-80. PubMed ID: 2400776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance energy transfer between the active sites of rabbit muscle creatine kinase: analysis by steady-state and time-resolved fluorescence.
    Grossman SH
    Biochemistry; 1989 May; 28(11):4894-902. PubMed ID: 2765518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance energy transfer between the active sites of myocardial-type creatine kinase (isozyme MB).
    Grossman SH
    Biochemistry; 1983 Nov; 22(23):5369-75. PubMed ID: 6652070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit conformation and dynamics in a heterodimeric protein: studies of the hybrid isozyme of creatine kinase.
    Grossman SH; Sellers DS
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):447-53. PubMed ID: 9748661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physicochemical comparison of the isozymes of creatine kinase from rabbit brain and muscle.
    Grossman SH; Akinade FA; Garcia-Rubio L
    Biochim Biophys Acta; 1990 Sep; 1040(3):311-6. PubMed ID: 2223836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational heterogeneity of creatine kinase determined from phase resolved fluorometry.
    Grossman SH
    Biophys J; 1991 Mar; 59(3):590-7. PubMed ID: 2049520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An equilibrium study of the dependence of secondary and tertiary structure of creatine kinase on subunit association.
    Grossman SH
    Biochim Biophys Acta; 1994 Nov; 1209(1):19-23. PubMed ID: 7947978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous flexibilities of the active site domains of homodimeric creatine kinase: effect of substrate.
    Grossman SH; France RM; Mattheis JR
    Biochim Biophys Acta; 1992 Sep; 1159(1):29-36. PubMed ID: 1390909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is the subunit the minimal function unit of creatine kinase?
    Wang XC; Zhou HM; Wang ZX; Tsou CL
    Biochim Biophys Acta; 1990 Jul; 1039(3):313-7. PubMed ID: 2378889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation of the SH1-SH2 and SH1-ATPase distances in myosin subfragment-1 by resonance energy transfer using nanosecond fluorimetry.
    Cheung HC; Gonsoulin F; Garland F
    Biochim Biophys Acta; 1985 Nov; 832(1):52-62. PubMed ID: 2932161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-domain lifetime fluorometry of double-labeled creatine kinase.
    Gregor M; Kubala M; Amler E; Mejsnar J
    Physiol Res; 2003; 52(5):579-85. PubMed ID: 14535833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of a multisite fluorescence energy-transfer system for protein folding studies: a steady-state and time-resolved study of yeast phosphoglycerate kinase.
    Lillo MP; Beechem JM; Szpikowska BK; Sherman MA; Mas MT
    Biochemistry; 1997 Sep; 36(37):11261-72. PubMed ID: 9287169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance between skeletal protein 4.1 and the erythrocyte membrane bilayer measured by resonance energy transfer.
    Shahrokh Z; Verkman AS; Shohet SB
    J Biol Chem; 1991 Jun; 266(18):12082-9. PubMed ID: 2050702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximity relationships within the Fc segment of rabbit immunoglobulin G analyzed by resonance energy transfer.
    Luedtke R; Owen CS; Vanderkooi JM; Karush F
    Biochemistry; 1981 May; 20(10):2927-36. PubMed ID: 7248259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence energy transfer between Cys-10 residues in F-actin filaments.
    Miki M; Barden JA; Hambly BD; dos Remedios CG
    Biochem Int; 1986 May; 12(5):725-31. PubMed ID: 3089224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence energy transfers between points in acto-subfragment-1 rigor complex.
    Miki M; Wahl P
    Biochim Biophys Acta; 1984 Nov; 790(3):275-83. PubMed ID: 6487641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of brain-type creatine kinase at 1.41 A resolution.
    Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K
    Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain creatine kinase and creatine transporter proteins in normal and creatine-treated rabbit pups.
    Kekelidze T; Khait I; Togliatti A; Holtzman D
    Dev Neurosci; 2000; 22(5-6):437-43. PubMed ID: 11111160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creatine kinase isozyme transition in chicks with hereditary muscular dystrophy.
    Stewart PA; Percy ME; Chang LS; Thompson MW
    Muscle Nerve; 1981; 4(2):165-73. PubMed ID: 7207507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nature and reactivity of the "essential" thiol in rabbit muscle creatine kinase III (EC 2.7.3.2).
    Fawcett AH; Keto AI; Mackerras P; Hamilton SE; Zerner B
    Biochem Biophys Res Commun; 1982 Jul; 107(1):302-6. PubMed ID: 7126210
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.