These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 2400776)

  • 21. Specific proteolytic modification of creatine kinase isoenzymes. Implication of C-terminal involvement in enzymic activity but not in subunit-subunit recognition.
    Lebherz HG; Burke T; Shackelford JE; Strickler JE; Wilson KJ
    Biochem J; 1986 Jan; 233(1):51-6. PubMed ID: 3006663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Creatine kinase structural changes induced by substrates.
    Hornikova D; Herman P; Mejsnar J; Vecer J; Zurmanova J
    Biochim Biophys Acta; 2009 Feb; 1794(2):270-4. PubMed ID: 19049907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural mapping of rabbit muscle phosphofructokinase. Distance between the adenosine cyclic 3',5'-phosphate binding site and a reactive sulfhydryl group.
    Craig DW; Hammes GG
    Biochemistry; 1980 Jan; 19(2):330-4. PubMed ID: 6243478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of myosin LYS-553 with the C-terminus and DNase I-binding loop of actin examined by fluorescence resonance energy transfer.
    Yengo CM; Chrin LR; Berger CL
    J Struct Biol; 2000 Sep; 131(3):187-96. PubMed ID: 11052891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A study on the dimeric structure of creatine kinase (EC 2.7.3.2).
    Wevers RA; Olthuis HP; Van Niel JC; Van Wilgenburg MG; Soons JB
    Clin Chim Acta; 1977 Mar; 75(3):377-85. PubMed ID: 852129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase.
    Borders CL; MacGregor KM; Edmiston PL; Gbeddy ER; Thomenius MJ; Mulligan GB; Snider MJ
    Protein Sci; 2003 Mar; 12(3):532-7. PubMed ID: 12592023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Properties of human creatine kinase isoenzymes].
    Malakhov VN; Tishchenko VA; Efron II; ChukhriÄ­ EA; Isachenkov VA
    Biokhimiia; 1977 Jul; 42(7):1221-31. PubMed ID: 20162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue.
    Reddy S; Jones AD; Cross CE; Wong PS; Van Der Vliet A
    Biochem J; 2000 May; 347 Pt 3(Pt 3):821-7. PubMed ID: 10769188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards creatine kinase aggregation due to the cysteine modification at the flexible active site and refolding pathway.
    Mu H; Zhou SM; Yang JM; Meng FG; Park YD
    Int J Biol Macromol; 2007 Oct; 41(4):439-46. PubMed ID: 17673285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic evidence for active monomers during the reassembly of denatured creatine kinase.
    Grossman SH; Pyle J; Steiner RJ
    Biochemistry; 1981 Oct; 20(21):6122-8. PubMed ID: 7306499
    [No Abstract]   [Full Text] [Related]  

  • 31. Discrimination between the four tryptophan residues of MM-creatine kinase on the basis of the effect of N-bromosuccinimide on activity and spectral properties.
    Clottes E; Vial C
    Arch Biochem Biophys; 1996 May; 329(1):97-103. PubMed ID: 8619641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial creatine kinase from human heart muscle: purification and characterization of the crystallized isoenzyme.
    Blum HE; Deus B; Gerok W
    J Biochem; 1983 Oct; 94(4):1247-57. PubMed ID: 6418727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene duplication events producing muscle (M) and brain (B) isoforms of cytoplasmic creatine kinase: cDNA and deduced amino acid sequences from two lower chordates.
    Graber NA; Ellington WR
    Mol Biol Evol; 2001 Jul; 18(7):1305-14. PubMed ID: 11420369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the stability of creatine kinase isozymes.
    Guo Z; Wang Z; Wang X
    Biochem Cell Biol; 2003 Feb; 81(1):9-16. PubMed ID: 12683631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence energy transfer studies on lima bean lectin. Distance between the subunit hydrophobic binding site and the thiol group essential for carbohydrate binding.
    Kella NK; Roberts DD; Shafer JA; Goldstein IJ
    J Biol Chem; 1984 Apr; 259(8):4777-81. PubMed ID: 6715322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deterministic pressure dissociation and unfolding of triose phosphate isomerase: persistent heterogeneity of a protein dimer.
    Rietveld AW; Ferreira ST
    Biochemistry; 1996 Jun; 35(24):7743-51. PubMed ID: 8672474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altering creatine kinase isoenzymes in transgenic mouse muscle by overexpression of the B subunit.
    Brosnan MJ; Raman SP; Chen L; Koretsky AP
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C151-60. PubMed ID: 8430764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional aspects of creatine kinase in brain.
    Hemmer W; Wallimann T
    Dev Neurosci; 1993; 15(3-5):249-60. PubMed ID: 7805577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis.
    Tachikawa M; Fukaya M; Terasaki T; Ohtsuki S; Watanabe M
    Eur J Neurosci; 2004 Jul; 20(1):144-60. PubMed ID: 15245487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistical interpretation of fluorescence energy transfer measurements in macromolecular systems.
    Hillel Z; Wu CW
    Biochemistry; 1976 May; 15(10):2105-13. PubMed ID: 1276126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.