These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 24008277)

  • 1. Down syndrome: genes, model systems, and progress towards pharmacotherapies and clinical trials for cognitive deficits.
    Busciglio J; Capone G; O'Bryan J; Gardiner KJ
    Cytogenet Genome Res; 2013; 141(4):260-71. PubMed ID: 24008277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations.
    Gardiner KJ
    Drug Des Devel Ther; 2015; 9():103-25. PubMed ID: 25552901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathways to cognitive deficits in Down syndrome.
    Sturgeon X; Le T; Ahmed MM; Gardiner KJ
    Prog Brain Res; 2012; 197():73-100. PubMed ID: 22541289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nest building is impaired in the Ts65Dn mouse model of Down syndrome and rescued by blocking 5HT2a receptors.
    Heller HC; Salehi A; Chuluun B; Das D; Lin B; Moghadam S; Garner CC; Colas D
    Neurobiol Learn Mem; 2014 Dec; 116():162-71. PubMed ID: 25463650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive and pharmacological insights from the Ts65Dn mouse model of Down syndrome.
    Ruparelia A; Pearn ML; Mobley WC
    Curr Opin Neurobiol; 2012 Oct; 22(5):880-6. PubMed ID: 22658745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of trisomic proteins in Down syndrome model systems.
    Spellman C; Ahmed MM; Dubach D; Gardiner KJ
    Gene; 2013 Jan; 512(2):219-25. PubMed ID: 23103828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mouse models of Down syndrome: gene content and consequences.
    Gupta M; Dhanasekaran AR; Gardiner KJ
    Mamm Genome; 2016 Dec; 27(11-12):538-555. PubMed ID: 27538963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene therapy for Down syndrome.
    Fillat C; Altafaj X
    Prog Brain Res; 2012; 197():237-47. PubMed ID: 22541296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein dynamics associated with failed and rescued learning in the Ts65Dn mouse model of Down syndrome.
    Ahmed MM; Dhanasekaran AR; Block A; Tong S; Costa AC; Stasko M; Gardiner KJ
    PLoS One; 2015; 10(3):e0119491. PubMed ID: 25793384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetics: the neglected key to minimize learning and memory deficits in Down syndrome.
    Dekker AD; De Deyn PP; Rots MG
    Neurosci Biobehav Rev; 2014 Sep; 45():72-84. PubMed ID: 24858130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Down syndrome--recent progress and future prospects.
    Wiseman FK; Alford KA; Tybulewicz VL; Fisher EM
    Hum Mol Genet; 2009 Apr; 18(R1):R75-83. PubMed ID: 19297404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways.
    Rachidi M; Lopes C
    Eur J Paediatr Neurol; 2008 May; 12(3):168-82. PubMed ID: 17933568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotransmitter-based strategies for the treatment of cognitive dysfunction in Down syndrome.
    Das D; Phillips C; Hsieh W; Sumanth K; Dang V; Salehi A
    Prog Neuropsychopharmacol Biol Psychiatry; 2014 Oct; 54():140-8. PubMed ID: 24842803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human chromosome 21 orthologous region on mouse chromosome 17 is a major determinant of Down syndrome-related developmental cognitive deficits.
    Zhang L; Meng K; Jiang X; Liu C; Pao A; Belichenko PV; Kleschevnikov AM; Josselyn S; Liang P; Ye P; Mobley WC; Yu YE
    Hum Mol Genet; 2014 Feb; 23(3):578-89. PubMed ID: 24041763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic mechanisms involved in the phenotype of Down syndrome.
    Patterson D
    Ment Retard Dev Disabil Res Rev; 2007; 13(3):199-206. PubMed ID: 17910086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Relevance of animal models in the study of human pathologies: a mouse model of Down syndrome].
    Morice E
    Biol Aujourdhui; 2010; 204(1):3-8. PubMed ID: 20950569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse models of cognitive disabilities in trisomy 21 (Down syndrome).
    Roubertoux PL; Carlier M
    Am J Med Genet C Semin Med Genet; 2010 Nov; 154C(4):400-16. PubMed ID: 20981769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive behavioral phenotyping of Ts65Dn mouse model of Down syndrome: activation of β1-adrenergic receptor by xamoterol as a potential cognitive enhancer.
    Faizi M; Bader PL; Tun C; Encarnacion A; Kleschevnikov A; Belichenko P; Saw N; Priestley M; Tsien RW; Mobley WC; Shamloo M
    Neurobiol Dis; 2011 Aug; 43(2):397-413. PubMed ID: 21527343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse models of cognitive disorders in trisomy 21: a review.
    Sérégaza Z; Roubertoux PL; Jamon M; Soumireu-Mourat B
    Behav Genet; 2006 May; 36(3):387-404. PubMed ID: 16523244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using mouse models to explore genotype-phenotype relationship in Down syndrome.
    Salehi A; Faizi M; Belichenko PV; Mobley WC
    Ment Retard Dev Disabil Res Rev; 2007; 13(3):207-14. PubMed ID: 17910089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.